PCI with On-Site Surgical Services is most Cost-Effective Strategy (Primary or Elective PCI)

Dean J. Kereiakes, M.D.
Medical Director, The Christ Hospital Heart and Vascular Center and the Lindner Research Center, Cincinnati, Ohio
Professor of Clinical Medicine, Ohio State University
Consulting fees:

- **Modest**: Medpace, HCRI, Ablative Solutions, Inc.
- **Significant**: Boston Scientific, Abbott Vascular, REVA Medical Inc.
Primary PCI vs. Fibrinolytic Therapy: Bayesian Hierarchical Meta-analysis of All Trials

<table>
<thead>
<tr>
<th>Condition</th>
<th>RCCT (n)</th>
<th>Observational (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term Death</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>Long-term Death</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Short-term MI</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Long-term MI</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Major Bleed</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Short-term Death
- Favors Primary PCI \(* \)
 - OR: 0.66 (0.51 - 0.82)

Long-term Death
- Favors Primary PCI \(* \)
 - OR: 0.76 (0.58 - 0.95)

Short-term MI
- Favors Primary PCI \(* \)
 - OR: 0.35 (0.24 - 0.51)

Long-term MI
- Favors Primary PCI \(* \)
 - OR: 0.49 (0.32 – 0.66)

Stroke
- Favors Primary PCI \(* \)
 - OR: 0.37 (0.21 – 0.60)

Major Bleed
- Favors Primary PCI \(* \)
 - OR: 1.40 (0.88 – 2.00)

Observational
- OR: 1.30 (0.37 - 4.42)

* >frequent, complete, durable reperfusion

Huynh, Theroux et al. Circ 2009;119:3101
Options for Catheter-Based Therapy of STEMI*

• Take the patient to PCI at a regional facility ("heart-attack center")

• Take PCI to the patient at a smaller community hospital

*PPCI preferred Rx ACC/AHA/SCAI Guidelines; Ohio 67/157(43%) acute care/critical access hospitals with ER’s report D2B to CMS (~39% nationally)
“Truths” in Medicine Which Apply to PPCI for STEMI and Elective PCI

- Volume drives proficiency and efficiency: “practice makes perfect”
- Resources in medicine are limited (specialized nurses, doctors, equipment, etc.)
- Regionalization facilitates guideline adherence, QI monitoring and access to advanced technologies / expertise (M.D. and staff)
- C-PORT PPCI was not definitive (prematurely terminated, underpowered pilot trial with outcomes and statistical methods); C-PORT E and MASS COMM have not fulfilled the promise of increased access to cost-efficient, quality PCI
Hospital Mortality Stratified by Hospital Primary Angioplasty Volumes\(^1\): NRMI Database

Death During Hospitalization %

- **Low**
 - Thrombolytic Therapy: 5.9%
 - Primary Angioplasty: 6.2%
 - N: 10144

- **Intermediate**
 - Thrombolytic Therapy: 5.9%
 - Primary Angioplasty: 4.5%
 - N: 21577

- **High\(^*\)**
 - Thrombolytic Therapy: 5.4%
 - Primary Angioplasty: 3.4%
 - N: 8805

\(^*\)Low \(\leq 16\), Intermediate 17-48, High \(\geq 49/\text{PCI/yr}\)

\(^1\)Magid, Barron et al. JAMA 2000;284:3131
Relationship of Hospital Primary PCI Volume and Hospital Mortality: New York State Database*

* 7,321 patients 2000-2002

Srinivas et al. JACC 2009;53:574

% Risk Adjusted Mortality vs. Annual Hospital Volume (per year)

State-wide mortality
Relationship of Operator Primary PCI Volume and Hospital Mortality: New York State Database*

* 7,321 patients 2000-2002

Srinivas et al. JACC 2009;53:574
PCI Outcomes by Institutional Volume* of PCI

In Hospital Death:

Doucet (2002)
Jollis (1997)
Ho (2004)
Ritchie (1999)
Kimmel (1995)
Epstein (2004)

Total (n=1,377,059)

*High ≥ 200; Low < 200 PCI

Keeley, Grines Circ 2005;112:3520
Cardiovascular Manpower

The Looming Crisis

Robert O. Bonow, MD; Sidney C. Smith, Jr, MD
CRISIS in WHITE

A nursing shortage is quickly transforming round-the-clock hospital care into a fantasy of the past. Here's what you need to know to protect your loved ones.
Nurses wanted
The supply and demand for full-time registered nurses (in thousands):

<table>
<thead>
<tr>
<th>Year</th>
<th>Supply 2000</th>
<th>Demand 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>'00</td>
<td>1,890</td>
<td></td>
</tr>
<tr>
<td>'05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 2010, 2015, 2020 numbers projected
Source: American Hospital Association
Nursing shortage: Local hospitals recruit overseas

“Monthly pay here can top a year’s in Philippines”
99,479 Patients were screened for eligibility

- 23,805 Did not provide consent
 - 19,375 Were not approached
 - 4,430 Declined to participate

75,674 Provided consent

- 56,807 Did not undergo randomization
 - 2,298 Were considered high risk for PCI
 - 6,978 Underwent CABG
 - 29,762 Underwent other medical therapy
 - 17,769 Had other reasons

18,867 Underwent randomization

- 4718 Were assigned to undergo PCI at site with on-site cardiac surgery
 - 180 Did not undergo PCI
 - 42 (0.9%) Withdrew
 - 87 (1.8%) Were lost to follow-up

14,149 Were assigned to undergo PCI at site without on-site cardiac surgery

- 14,010 Underwent PCI
 - 13,967 (99.7%) Underwent PCI at site without on-site cardiac surgery
 - 43 (0.3%) Crossed over and underwent PCI at site with on-site cardiac surgery
 - 139 Did not undergo PCI
 - 52 (0.4%) Withdrew
 - 271 (1.9%) Were lost to follow-up

13,967 (99.7%) Underwent PCI at site without on-site cardiac surgery

4538 Underwent PCI

- 4508 (99.3%) Underwent PCI at site with on-site cardiac surgery
 - 42 (0.9%) Withdrew
 - 87 (1.8%) Were lost to follow-up

30 (0.7%) Crossed over and underwent PCI at site without on-site cardiac surgery
C-PORT E: Procedural Success

PCI-Success

- Per-Patient: 90.7, 91.4
- Per-Lesion: 93.4, 94.1

PCI-Failure

- Per-Patient: 3.4, 2.5
- Per-Lesion: 6.6, 5.9

P = 0.007
P = 0.04

C-PORT E: Clinical Outcomes

- **No SOS**
- **SOS**

6 weeks

- **Death**
 - 0.9% (No SOS)
 - 1.0% (SOS)

- **TVR**
 - 6.5% (No SOS)
 - 5.4% (SOS)

- **MACE**
 - 12.1% (No SOS)
 - 11.2% (SOS)

9 mos ITT

- **Death**
 - p=0.0098

- **TVR**
 - p=0.0977

- **MACE**
 - P<0.001*

Per protocol

- **Death**
 - p=0.0030

- **TVR**
 - 6.2% (No SOS)
 - 4.5% (SOS)

- **MACE**
 - 12.0% (No SOS)
 - 10.4% (SOS)

*Chi-squared analysis

C-PORT E: Cost-Effectiveness

Adapted from Eisenstein et al. AHA 2012
C-PORT E: Cost-Effectiveness

Adapted from Eisenstein et al. AHA 2012

Low volume <200 PCI

- **Index Procedure**: No SOS 19,807, SOS 19,365
- **Follow-up**: No SOS 4,857, SOS 5,836
- **Total 9 Months**: No SOS 25,643, SOS 24,222

High volume ≥200 PCI

- **Index Procedure**: No SOS 19,912, SOS 18,666
- **Follow-up**: No SOS 5,172, SOS 5,453
- **Total 9 Months**: No SOS 25,365, SOS 23,838

P-values:
- Low volume: P=0.41, P=0.000, P=0.02
- High volume: P=0.18, P=0.23, P=0.15

Adapted from Eisenstein et al. AHA 2012
6,694 pts PCI at or originating from non-SOS center

5,392 pts meet trial inclusion criteria

3,691 pts randomized

2,774 PCI No-SOS
- 2,706 (97.5%) included
 - 2,439 (87.9%) included
 - 12 months analysis
- 68 excluded

917 PCI SOS
- 886 (96.6%) included
 - 787 (85.8%) included
 - 12 months analysis
- 31 excluded

Exclusions:
- 109 PCI ≤ 30 days
- 151 emergent/salvage procedure
- 361 SVG target
- 22 LVEF <20%
- 219 creat >2.5/dialysis
- 18 STEMI ≤ 48 hours
- 30 pre-op eval
- 157 atherectomy / thrombectomy
- 4 shock
- 131 left main >50%

Primary Endpoint Events: MASS COMM

- MACE 30 days: No-SOS (9.5%), SOS (17.3%)
- MACE 12 months: No-SOS (17.4%), SOS (17.8%)
- Repeat revasc: No-SOS (8.5%), SOS (9.9%)

Non-Emergency PCI At Hospitals With And Without On-Site Cardiac Surgery: MASS COMM

12-month MACE by Site

*S Absolute between site variance of 17%

Jacobs et al. NEJM 2013 (pre-pub)
Average Annual Operator Total PCI Procedural Volume 2006-2011: MASS-COMM Operators

<table>
<thead>
<tr>
<th>Operator category</th>
<th>2006 Mean (min,max)</th>
<th>2007 Mean (min,max)</th>
<th>2008 Mean (min,max)</th>
<th>2009 Mean (min,max)</th>
<th>2010 Mean (min,max)</th>
<th>2011* Mean (min,max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOS Only</td>
<td>143.5 (51, 269)</td>
<td>122.6 (11, 274)</td>
<td>118.0 (5, 212)</td>
<td>105.4 (28, 185)</td>
<td>102.3 (18, 181)</td>
<td>103.9 (11, 176)</td>
</tr>
<tr>
<td>(n=34 all yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># by yr</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>SOS plus Non-SOS</td>
<td>130.2 (11, 256)</td>
<td>116.0 (10, 235)</td>
<td>105.0 (6, 217)</td>
<td>109.4 (1, 257)</td>
<td>105.1 (5, 305)</td>
<td>118.8 (48, 359)</td>
</tr>
<tr>
<td>(n=34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># by yr</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Average annual volume</td>
<td>116.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112.9</td>
</tr>
</tbody>
</table>

~40% reduction in SOS annual operator volumes during course of study (vs. 9% no-SOS plus SOS)

Jacobs et al. NEJM 2013 (pre-pub; Supplemental Appendix Table S2)
Adjudicated Procedural Characteristics In The Angiographic Review Cohort: MASS COMM

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PCI at no-SOS hospitals without on-site cardiac surgery (n=289 pts and 392 lesions)</th>
<th>PCI at SOS hospitals with on-site cardiac surgery (n=87 pts and 106 lesions)</th>
<th>Relative Risk (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful treatment of lesion – # of lesions (%) (per lesion)</td>
<td>366 / 383 (95.6)</td>
<td>102 / 105 (97.1)</td>
<td>0.98 (0.95-1.02)</td>
<td>0.59</td>
</tr>
<tr>
<td>Procedural success – # of pts (%) (per pt)</td>
<td>235 / 289 (81.3)</td>
<td>65 / 87 (74.7)</td>
<td>1.09 (0.95-1.24)</td>
<td>0.22</td>
</tr>
<tr>
<td>Complete revascularization – no. of pts (%)</td>
<td>174 / 289 (60.2)</td>
<td>52 / 87 (59.8)</td>
<td>1.01 (0.83-1.23)</td>
<td>1.00</td>
</tr>
<tr>
<td>Met indication criteria for PCI – no. of lesions (%)</td>
<td>369 / 392 (94.1)</td>
<td>97 / 106 (91.5)</td>
<td>1.03 (0.97-1.10)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Procedural Success Percentages

MASS-COMM SOS hospitals

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Per patient</th>
<th>Per lesion success</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>97</td>
<td>98.3 10th</td>
</tr>
<tr>
<td>97</td>
<td>100</td>
<td>98.9 25th</td>
</tr>
<tr>
<td>97</td>
<td>100</td>
<td>99.4 50th</td>
</tr>
<tr>
<td>97</td>
<td>100</td>
<td>99.7 75th</td>
</tr>
<tr>
<td>97</td>
<td>100</td>
<td>100 90th</td>
</tr>
</tbody>
</table>

ACC-NCDR®
CathPCI Registry™
Percentile Rankings
PCI Volume at Facilities With and Without On-Site Cardiac Surgery

ACC / NCDR

Dehmer et al. JACC 2012 (epub)

89% of no SOS centers ≤ 400 cases/year

83% of centers < 200 cases/year are no SOS
“Assume the average state PCI mortality is 1%, but in a given year, an individual hospital has a mortality of 2%. At a facility volume of 400 cases annually and using a 95% confidence interval, it would take just about 2 years of data at 2% mortality to be certain the increase was significant rather than variation; at a facility volume of 200 PCIs annually, it would take almost 4 years to be certain. Therefore, as PCI volumes decrease, using a hospital’s risk-adjusted mortality as the sole measure of quality is problematic.”

Dehmer GJ. JACC Card Int 2013;6:631-633
Another Volume Outcome Relationship

Statewide Mortality = 1%
Site Mortality = 2%

Aversano, T. ODH meeting, 12/12/12
Total PCI Volumes by Year: Ohio Waiver Hospitals

<table>
<thead>
<tr>
<th>Hospital</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knox CH</td>
<td>338</td>
<td>361</td>
</tr>
<tr>
<td>CH Williams County</td>
<td>137</td>
<td>136</td>
</tr>
<tr>
<td>Fort Hamilton Hughes</td>
<td>117</td>
<td>130</td>
</tr>
<tr>
<td>Marietta Memorial</td>
<td>214</td>
<td>235</td>
</tr>
<tr>
<td>Licking Memorial</td>
<td>181</td>
<td>240</td>
</tr>
<tr>
<td>OSU East</td>
<td>14</td>
<td>67</td>
</tr>
<tr>
<td>West Chester</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>UH Geauga</td>
<td>53</td>
<td>135</td>
</tr>
<tr>
<td>Southview M.C.</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>Mt. Carmel St. Ann’s</td>
<td>279</td>
<td>254</td>
</tr>
</tbody>
</table>

Data provided by Ohio Department of Health 2/7/13
“It is important to note that a signal exists suggesting that an institutional volume threshold <200 PCI/year appears to be consistently associated with worse outcomes across various studies.”

“Accordingly, the writing committee recommends that an institution without on-site surgery with a volume fewer than 200 PCI annually, unless in a region underserved because of geography, should strongly consider whether or not it should continue to offer this service.”
• “It is important to note that a signal exists suggesting that an institutional volume threshold <200 PCI/year appears to be consistently associated with worse outcomes across various studies.”

• “Accordingly, the writing committee recommends that an institution without on-site surgery with a volume fewer than 200 PCI annually, unless in a region underserved because of geography, should strongly consider whether or not it should continue to offer this service.”
Access to PPCI in Cincinnati

Legend
- H: C-Port Participating Hospital
- H: NonPCI Capable Hospital
- H: PCI Capable Hospital (SOS)
Systematic Duplication of PCI Services by new PCI Programs: 2004-2008

Concannon et al. Circ Card Qual Outcomes 2013;6: E-pub

Census tracts with timely access to PPCI:
251 New PCI programs/estimated cost $2-4 billion

New Access Duplicated Access
Ohio CPORT Hospitals
Drive Time Analysis for PPCI/SOS Hospitals

Drive Time to PPCI/SOS
- Yellow: 15 minutes
- Green: 30 minutes
- Blue: 45 minutes

[Map showing drive times across Ohio with areas shaded in yellow, green, and blue to indicate time ranges.]
“Nearly 80% of the adult population in the United States lived within 60 minutes of a PCI hospital in 2000”

*44% increase PCI capacity (521 new programs) with 1% increase in access (79 vs 80% ≤ 60min ground transport)

Nallamothu et al. Circ 2006;113:1189
Conconnan et al. Circ Cardiovasc Qual Outcomes 2012;5:14-20
89% of Ohio population lives within 30 minutes of hospital that does primary PCI
Transportation and Reperfusion Options for STEMI

Goal:
- Call 911, call fast

- Patient symptom onset of STEMI
- 911 EMS dispatch
- EMS on-scene
 - Encourage 12-lead ECGs at FMC
 - Consider pre-hospital fibrinolytic if capable and EMS-needle ≤ 30 min
- EMS transport
 - EMS-balloon ≤ 90 min
- Interhospital transfer
- Not PCI capable
- PCI capable

- Patient self-transport: hospital door-balloon ≤ 90 min

*pre-hospital ECG transmit / NHLBI Consensus document

Antman E, in Braunwald, Heart Disease 2005
Comparative Effectiveness of STEMI Regionalization Strategies *

Cost in 2008 Dollars (Millions)

- **Hospital-based strategies**
- **EMS-based strategy**

QALYs Saved

“build more” vs “use more effectively”

EMS-based = less costly and more effective

AMI Hospitalization Rate (per 100,000 Beneficiary-Years*)
For Men and Women 2002-2007

* Medicare Fee-For-Service

Chen et al. Circ 2010;121:1322
U.S. Coronary Revascularization Trends 2001-2009:

Year / Year % Change

CABG

2002 2003 2004 2005 2006 2007 2008 2009

-10 -8 -6 -4 -2 0 2 4

2002 2003 2004 2005 2006 2007 2008 2009

PCI

2002 2003 2004 2005 2006 2007 2008 2009

-15 -10 -5 0 5 10

*2004-2009 2.5%/yr decline

Unintended (?) Consequences of no-SOS center proliferation:

- Promote the performance of unnecessary PCI procedures to justify their existence (Chan et al. JACC 2013)
- Less likely to document objective measures of ischemia and/or lesion severity (FFR, IVUS)
- Geographic disparity in location exaggerates decline in annual per center procedural volumes (MASS-COMM) with consequent adverse clinical outcomes and confounds quality analyses.
- PCI results are no better (CPORT-E and MASS-COMM “not inferior” hypothesis: PCI success less / repeat revascularization more) and cost appears to be greater!

Who benefits from this?
Conclusions

• Volume drives proficiency and efficiency/resources in medicine are limited. Regionalized STEMI care with EMS integration is the most cost-effective approach to STEMI.

• Fragmentation and reduplication of CV services is costly in both dollars and outcomes. CPORT PPCI/E and MASS COMM have increased PCI capacity with no change in access and the “covert” objective has been market share.

• Focus should now be placed on developing regional centers of excellence in care for STEMI with global EMS integration to facilitate pre-hospital identification and triage of STEMI patients.

• Elective PCI is most cost-effectively provided by higher volume centers with on-site CV surgery (SOS) facilities.
Predictors of Inappropriate PCI

#### OR (95% CI)	P value
Men | 1.08 (1.05-1.11) | <0.001
White | 1.09 (1.05-1.14) | <0.001
Medicare | 0.85 (0.83-0.88) | <0.001
No Insurance | 0.56 (0.50-0.61) | <0.001
Rural hosp | 0.92 (0.88-0.96) | <0.001
Suburban hosp | 1.10 (1.07-1.13) | <0.001
Annual # elective PCI (per 100 cases) | 0.99 (0.99-0.99) | <0.001

Adapted from Chan et al. JACC 2013 (prepub-Sept)
Physician Annual PCI Volume And In-Hospital Mortality ACC/NCDR*
July 2008-July 2009

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All PCI</td>
<td>1.14 (1.05, 1.24)</td>
<td><0.01</td>
</tr>
<tr>
<td>(n=345,526)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI/Shock</td>
<td>1.10 (1.00, 1.21)</td>
<td>0.06</td>
</tr>
<tr>
<td>No STEMI/Shock</td>
<td>1.27 (1.11, 1.45)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*3649 physicians; 345,526 PCI; 543 Cath PCI hospitals

PCI Center Volume* And In-Hospital Mortality: Meta-Analysis Of 10 Studies Involving 1,322,342 Patients

<table>
<thead>
<tr>
<th>Model</th>
<th>Study name</th>
<th>Mean study year</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Odds ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho⁴</td>
<td></td>
<td>1986</td>
<td>0.840</td>
<td>0.787</td>
<td>0.897</td>
<td></td>
</tr>
<tr>
<td>Ho⁴</td>
<td></td>
<td>1990</td>
<td>0.850</td>
<td>0.797</td>
<td>0.907</td>
<td></td>
</tr>
<tr>
<td>Hannan et al.²³</td>
<td></td>
<td>1993</td>
<td>0.860</td>
<td>0.775</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>Vakili et al.¹⁵</td>
<td></td>
<td>1995</td>
<td>0.670</td>
<td>0.414</td>
<td>1.084</td>
<td></td>
</tr>
<tr>
<td>Ho⁴</td>
<td></td>
<td>1995</td>
<td>0.910</td>
<td>0.852</td>
<td>0.972</td>
<td></td>
</tr>
<tr>
<td>Kimmel et al.¹³</td>
<td></td>
<td>1995</td>
<td>1.230</td>
<td>0.910</td>
<td>1.662</td>
<td></td>
</tr>
<tr>
<td>Canto et al.¹²ᵃ</td>
<td></td>
<td>1996</td>
<td>0.870</td>
<td>0.767</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>Tsuchihashi et al.¹⁰</td>
<td></td>
<td>1997</td>
<td>0.840</td>
<td>0.456</td>
<td>1.547</td>
<td></td>
</tr>
<tr>
<td>Hannan et al.²⁴</td>
<td></td>
<td>1999</td>
<td>0.660</td>
<td>0.505</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td>Carey et al.¹⁴ᵃ</td>
<td></td>
<td>2000</td>
<td>0.950</td>
<td>0.849</td>
<td>1.063</td>
<td></td>
</tr>
<tr>
<td>Allareddy et al.²²</td>
<td></td>
<td>2002</td>
<td>0.813</td>
<td>0.731</td>
<td>0.904</td>
<td></td>
</tr>
<tr>
<td>Shirashi et al.¹¹</td>
<td></td>
<td>2003</td>
<td>0.807</td>
<td>0.557</td>
<td>1.169</td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td>0.865</td>
<td>0.827</td>
<td>0.905</td>
<td></td>
</tr>
</tbody>
</table>

*High volume ≥600/yr; lower volume 400-600/yr

ACCF/AHA/SCAI 2013 Update Clinical Competence Statement
Meta-Regression of % Stent PCI on PCI Volume In Hospital Mortality Effect Size*

* >negative log odds ratio = stronger effect size (greater volume-outcome relationship)

Deaths in the United States by Cause

- Heart: 725,192
- Cancer: 607,265
- Stroke: 549,838
- COPD: 390,122
- Trauma: 167,366
- All: 124,184
- Age ≥ 65: 97,860

*CHD=7x all-cause trauma; 3x stroke

CONCLUSIONS

Our findings show that the risk of death is significantly lower when care is provided in a trauma center than in a non-trauma center and argue for continued efforts at regionalization.
AHA/ASA Scientific Statement

Metrics for Measuring Quality of Care in Comprehensive Stroke Centers: Detailed Follow-Up to Brain Attack Coalition Comprehensive Stroke Center Recommendations

A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

Endorsed by the Society of Vascular and Interventional Neurology

Dana Leifer, MD, FAHA, Chair; Dawn M. Bravata, MD; J.J. (Buddy) Connors III, MD; Judith A. Hinchey, MD, MS, FAHA; Edward C. Jauch, MD, MS, FAHA; S. Claiborne Johnston, MD, PhD; Richard Latchaw, MD; William Likosky, MD, FAHA; Christopher Ogilvy, MD; Adnan I. Qureshi, MD, FAHA; Debbie Summers, RN, MSN, FAHA; Gene Y. Sung, MD, MPH, FAHA; Linda S. Williams, MD; Richard Zorowitz, MD, FAHA; on behalf of the American Heart Association Special Writing Group of the Stroke Council, Atherosclerotic Peripheral Vascular Disease Working Group, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular Nursing

*certification process JCAHO
EMS Transport and Prehospital ECG to Expedite Hospital Thrombolysis (Door to Needle Time)

Kereiakes et al. Am Heart J 1992;123:835

Minutes from admission to treatment

- Walk-ins: N=57
- Private Ambulance: N=55
- EMS - No ECG Randomized: N=11
- EMS ECG Randomized: N=11
Prehospital ECG Facilitates In-hospital Primary Angioplasty

Door to balloon time (minutes)

- Walk-ins
- EMS-no cath alert
- EMS - cath alert
- Prehospital ECG

Bush et al. JACC 2005;45:222A

Min-Max
25%-75%
Median value
Pre-Hospital ECG and Door-To-Balloon Time: NRMI 4

Without pre-hosp ECG

- >120: 36.6%
- 90 to 120: 30.3%
- <90: 33.1%

With pre-hosp ECG

- >120: 20.2%
- 90 to 120: 24.6%
- <90: 55.2%
Pre-Hospital ECG and Reperfusion: ACTION NCDR

Pre-hospital ECG (n=1941)
In-hospital ECG (n=5157)

Min / %

Door-to-Needle

19.0
72.4
61.0
82.3
29.0
49.1
75.0
70.0

Door-to-Balloon

P<0.0001

P=0.003

P=0.05

P<0.0001

Adapted from Diercks et al. JACC 2009;53:161-6
SPECIAL ARTICLE

Pre-Hospital 12-Lead Electrocardiography Programs

A Call for Implementation by Emergency Medical Services Systems Providing Advanced Life Support—National Heart Attack Alert Program (NHAAP) Coordinating Committee; National Heart, Lung, and Blood Institute (NHLBI); National Institutes of Health

J. Lee Garvey, MD,* Bruce A. MacLeod, MD, FACEP,† George Sopko, MD,‡ Mary M. Hand, MSPH, RN,‡ on behalf of the National Heart Attack Alert Program (NHAAP) Coordinating Committee

Charlotte, North Carolina; Pittsburgh, Pennsylvania; and Bethesda, Maryland
PCI Facility Density Map: # PCI Centers / 1 MM Capita

Legend (# of PCI hospitals per 1 million capita)

- Top tertile (highest PCI density per capita) ; 8.1-12.1
- 2nd tertile (near the median density per capita) ; 5.9 – 8.0
- 1st tertile (fewest PCI density per capita) ; 3.2-5.8

2003-2011 PCI Center growth 21%
Population growth 8.3%
Disease (CAD, AMI) prevalence ↓

Langabeer, Henry, Kereiakes et al. JAHA (in press)
Non-Emergency PCI At Hospitals With And Without On-Site Cardiac Surgery: MASS COMM

30-day MACE by Site*

*S Absolute between site variance of 14%

Jacobs et al. NEJM 2013 (pre-pub)
Adverse Events In-Hospital Stratified By Hospital Volume Status: German CYPHER Registry

Khattab et al. Circulation 2009;120:600
Primary PCI Hospitals With And Without SOS in Grand Rapids*

Buckley et al. Am Heart J 2008;155:668-672

*"access" within 20 miles: 12 no-SOS PPCI hospitals
Improved access 4.8% in Michigan (3 centers ~ 4.3% and 9 centers ~ 0.5%)

*increased capacity without increased access