Geriatric Cardiology: Octogenarian Pearls

Nanette K. Wenger, MD, MACC, MACP, FAHA
Professor of Medicine (Cardiology)
Emory University School of Medicine
Consultant, Emory Heart & Vascular Center
Atlanta, Georgia

2016 Richard P. Lewis Memorial Lecture
DISCLOSURE STATEMENT

Nanette Kass Wenger, M.D.

<table>
<thead>
<tr>
<th>Name of Commitment</th>
<th>Name of Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Grants/Contracts/Trial</td>
<td>Alnylam Pharmaceuticals, Gilead Sciences, NHLBI, Pfizer, Society for Women’s Health Research</td>
</tr>
<tr>
<td>Steering Committee/Trial Data</td>
<td></td>
</tr>
<tr>
<td>Safety and Monitoring Board</td>
<td></td>
</tr>
<tr>
<td>Consultantship</td>
<td>Amgen, AstraZeneca, Gilead Sciences, Merck</td>
</tr>
</tbody>
</table>
Cultural Resources for Positive Images

- “Old people are as valuable as precious stones”
 Chinese
- “Retirement is like a second childhood”
 Italian
- “He who has not an old man [in his household] let him buy one”
 Lebanese
- “Aging is like a tree in the fall: the leaves fall off, but the trunk is still strong”
 Swedish
- “The old pan is the one that makes good food”
 Portugese
- “The heart doesn’t age; only the skin shrivels”
 Spanish
Why is the Demography Important? (1)

- Unprecedented growth of elderly population worldwide - aging predisposes to cardiovascular disease (CVD)
 - 19% US population > 65 by 2030
 - 19 million > age 85
 - Globally > age 85 ↑ 151% 2005→2030
- Prototype U.S. cardiology patient an older adult
- Benchmarks: > 75 old age
 > 85 very old age
- Aging changes → clinically relevant differences in physiology, organ function, reserves
Why is the Demography Important? (2)

- Population > age 65
 - > 85% CV disease deaths
 - 65% CV disease hospitalizations
 - 62% MI hospitalizations
 - 77% HF hospitalizations

- Attributable CV risk highest in senior population
 - Greatest potential to favorably affect morbidity, mortality
 - Counterbalanced by increased iatrogenic risks
What is Geriatric Cardiology?

- Geriatric cardiology = practice of CV medicine adapted to needs, complexities of older adults
 - Multimorbidity
 - 68% have > 2 chronic conditions
 - Polypharmacy
 - Frailty
 - Cognitive impairment
 - Functional status/disability
 - Social, financial, psychological dimensions of aging

- Patient-centered care required to embrace complexity

Bell, J Am Coll Cardiol 66:1286, 2015
Geriatric Cardiology Issues

- Few data-driven studies to guide care for this vulnerable population
 - Patients outlived current data-driven recommendations

- Transformative effect of aging on CVD
 - ↓ Capacity to tolerate, desire medications, devices, procedures vs younger patients

- Co-existing conditions affect health-related QOL, survival

- Patient-centered outcomes, priorities vs disease-specific outcomes
Essentials of Cardiovascular Care for Older Adults (ECCOA) Curriculum

- Designed for cardiovascular specialists and other clinicians who care for older patients with cardiovascular disease.

- Teaches practitioners key features of aging that directly impact CVD to improve care and quality of life in this rapidly growing segment of the cardiovascular patient population.

- 17 ABIM MOC Part II points
Essentials of Cardiac Care for Older Adults (ECCOA)

• Online curriculum
 – www.acc.org/ECCOA
• Available to all practitioners.
• Each module takes ~30 minutes to complete
• 15 modules in total
• Provides 17 CME/CNE (Nursing)/CPE (Pharmacists) credits & MOC credits!
• Curriculum is FREE to all providers!

Modules

• Cardiovascular Physiology in the Older Adult
• Pharmacology for Older Adults
• Care of Older Adults
• Decision Making for Older Adults
• Heart Failure in Older Adults
• Chronic Coronary Disease in Older Adults
• Acute Coronary Syndromes in Older Adults
• Electrophysiology and Heart Rhythm Disorders in Older Adults
• Syncope in Older Adults
• Perioperative Care in Older Adults
• Palliative Care in Older Adults
• Prevention in Older Adults
• Vascular Disease in Older Adults
• Valvular Disease in Older Adults
CV Changes of Aging Increase Susceptibility to CV Disease

- ↑ Central arterial stiffness → ↑ afterload
- ↓ Endothelial function → ↓ v̇d
- ↓, Delayed early diastolic filling → ↑ dependence on “atrial kick”
- ↓ SA node pacemaker cells → sick sinus syndrome
- ↓ Aerobic capacity (↓ VO₂ max)
- ↓ β adrenergic responsiveness
- ↓ Preconditioning benefit
- ↓ Angiogenesis
Diagnostic Assessment

- Typical CV symptoms: chest pain, dyspnea, dizziness, exercise intolerance
 - Less specific with age-related physiologic attrition
 - > 50% patients have 5 or more coexisting chronic conditions

- CVD underestimated
 - Treatment delays notorious
 - Utilities of therapies uncertain

- CVD also overdiagnosed, overtreated
 - Imaging studies reflect age-related vasculature, physiologic changes
 - Unrelated to presenting complaint, e.g., geriatric syndromes of falls, dizziness, syncope, weakness

Forman, Am J Cardiol 106:1382, 2010
Clinical Examples

• Dx atrial fibrillation simple
 • Complex is decision which 85 year old should receive anticoagulants, which agent to use

• Dx severe aortic stenosis frequent, established criteria
 • Complex is assessment of frailty, multimorbidity prohibitive of TAVR

• Clinical, angiographic indications for PCI established
 • Complex is decision when dementia, multimorbidity precludes use
Goals of Care at Elderly Age (1)

- RCTs often assess mortality endpoints
 - Elderly patients may not view length of life as highest priority
- Health goals of elderly patients with chronic illness
 - Independence in daily living
 - Functional capacity: ability to ambulate
 - ↓ Hospitalizations
 - ↓ Symptoms (prolongation of symptom-free life)
- Concerns: psychosocial/financial burdens – personal and family
Goals of Care at Elderly Age (2)

- Elderly patients may not perceive RCT endpoints as beneficial
 - Manner and quality of death
 - ICD prevents sudden, painless death
 - Death from CHF, MI, cancer, noncardiac causes
 - ICDs rarely deactivated in hospice care

Pellegrini, Europace 10:1296, 2008
Contemporary Care Extrapolation from Evidence-Based Guidelines

- Pitfalls of disease-specific guidelines for elderly patients with multiple conditions
 - Data > age 80 virtually absent

- RCTs exclude elderly participants and when included systematically exclude those with comorbidities, complexities

- Elderly in RCTs ≠ community elderly

- Evidence-based care less certain

Tinetti, NEJM 351:2870, 2004
Perioperative Management for Non-Cardiac Surgery (1)

- Revised Cardiac Risk Index (RCRI)
 - Hx ischemic heart disease
 - Hx CHF
 - Hx stroke or TIA
 - Hx diabetes requiring preoperative insulin use
 - CKD (creatinine > 2mg/dL)
 - Undergoing suprainguinal vascular, intraperitoneal, or intrathoracic surgery

- Risk for cardiac death, MI, HF, cardiac arrest, heart block
 - 0 predictors – 0.4%
 - 1 predictor – 0.9%
 - 2 predictors 6.6%
 - ≥ 3 predictors - ≥ 11%

Fleisher Circulation 130;e278, 2014
Perioperative Management for Non-Cardiac Surgery (2)

- Rate of surgery up to 4-fold higher in older adults
 - Age ≥ 80 years independent predictor perioperative complications, death
 - Functional status, comorbidities rather than age alone determinants perioperative risk

- RCRI does not address baseline frailty, cognitive function, multimorbidity

- Perioperative complications →
 - ↑ Length of stay
 - ↑ Likelihood discharge to transitional care or chronic care facility
 - ↑ Risk disability, dependency
 - ↓ Quality of life
 - ↓ Likelihood recovery to preoperative physical, mental function

Wijeysundera, J Am Coll Cardiol 62:2460, 2014
January, J Am Coll Cardiol 64:e1, 2014
Perioperative Management for Non-Cardiac Surgery (3)

- Delirium in 15-53% older surgical patients (70-87% in ICU)
 - May → persistent cognitive deficits, functional decline

- Atrial arrhythmias, especially AF
 - Valve surgery > CABG > thoracic surgery > nonthoracic surgery
 - ↑ Stroke risk, ↑ hospital stay

- Inadequate pain control as well as excessive analgesics →
 - ↑ Risk perioperative complications

Fleisher, Circulation 130;e278, 2014
Cardiovascular Prevention at Elderly Age: Is it Ever Too Late?

- Patient-centered approach: INDIVIDUALIZE!

87 year old woman
No known CVD
BP = 160/90 mmHg
HgbA$_{1c}$ = 7.9
LDL-C = 150 mg/dL
Hypertension in Older Adults (1)
The Epidemic
go, Circulation 127:e6, 2013
Hypertension in Older Adults (2)

- ISH and widened pulse pressure ↑ with age
 - → Greater risk than diastolic HTN for coronary events, stroke, AF, HF, kidney disease, dementia

- Goal BP ???

- Pharmacologic management
 - Start low, go slow
 - Include lifestyle modifications
Physical Activity

- Sedentary lifestyle ↑ with advancing age
 - ↓ Aerobic functional capacity → ↑ mortality risk

- Aerobic and strength training ameliorate decline in age-related aerobic capacity (peak VO₂), diastolic dysfunction

- Physical activity → improvements in
 - BP
 - Lipid profile
 - Glucose control
 - Osteoarthritis symptoms
 - Neurocognitive function
 - Exercise capacity
 - Quality of life
 - Independence

Levy, Circulation 88:116, 1993
Fleg, Circulation 128:2422, 2013
Statin Use at Elderly Age

- Impressive array of trials of efficacy, safety → statins ↓ mortality for older adults, ↓ CHD events, stroke and DVT

- JUPITER
 - Elderly patients had greater rosvuastatin benefit than patients < 70

- Relevant aging dynamics
 - ? Eighth pill in complex regimen
 - ? Nebulous muscle aches, ↓ mobility
 - ? Medication costs

Afilalo, JACC 51:37:2008
Fleg, Circulation 128:2422, 2013
SIHD in Older Adults (1)

- Older adults have high prevalence of 3-vessel and left main disease
- Atypical symptoms angina common
 - Nausea, vomiting, mid-epigastric discomfort, ↓ activity tolerance
- Pharmacologic testing a more useful option than exercise stress testing: diagnosis and prognosis
- Same guideline-based secondary prevention as younger adults
- Cardiac catheterization/revascularization with high risk, refractory symptoms on optimal medical therapy: consider
 - Individual risks and benefits
 - Comorbidities
 - Goals of care
 - Current vs expected level of function

Fihn, J Am Coll Cardiol 60:e44, 2012
Levine, J Am Coll Cardiol 58:e44, 2011
de Boer, J Am Coll Cardiol Intv 3:324, 2010
Hillis, J Am Coll Cardiol 58:e123, 2011
SIHD in Older Adults (2)

• Marked ↑ PCI ≥ 75 years in past 25-30 years

• Despite ↑ bleeding, stroke risk PCI in older patients, comparable angiographic success, clinical benefits to younger patients
 • Absolute benefit may be greater in older patients

• CABG patients ≥ age 80 have greater extent/severity CAD, ↑ LV dysfunction, ↑ concomitant valve disease, prior cardiac surgery
 • ↑ Comorbidities not in many surgical risk scores
 • Euro SCORE II includes poor mobility
 • STS score incorporates gait speed as surrogate for frailty
 • None assess functional capacity or dementia
 • ↑ Operative mortality (2x↑) in octogenarians, discharge home ½ that of younger patients

ACS in Older Adults (1)

- 35% myocardial infarctions in US in patients 75 and older (11% of patients > age 85)

- STEMI less common than NSTEMI in older adults, although absolute numbers of STEMI ↑ with ↑ age

- Older patients, particularly older women, often present with non-chest pain ischemic symptoms
 - “GI symptoms” of nausea, vomiting, abdominal discomfort represent myocardial ischemia
 - Also common: severe dyspnea, fatigue, dizziness, syncope
 - Confusion, altered cognition

- EKG diagnosis often complicated by
 - Abnormal baseline EKG – LVH, prior MI, AF, conduction disease
 - STEMI presenting with new LBBB more common at advanced age

O’Gara, J Am Coll Cardiol 61:e78, 2013
Amsterdam, J Am Coll Cardiol 64:e139, 2014
ACS in Older Adults (2)

- Reperfusion associated with ↑ STEMI survival in older adults

- PCI favored over fibrinolytic therapy (at least to age 80) to ↓ 30-day mortality
 - Particular benefit anterior MI presenting > 6 hr after symptom onset, shock
 - ↓ Hemorrhagic stroke PCI vs fibrinolytic therapy
 - Fibrinolytic Rx associated with ↑ risk myocardial rupture ≥ age 75 (17% vs 5% with PCI)
 - Major primary PCI benefit is ↓ recurrent ischemic events, ↓ need subsequent target vessel revascularization

- NSTEMI: Greater absolute benefit early invasive management vs younger adults
 - Higher risk adverse outcomes with conservative management

Bueno, Eur Heart J 32:51, 2011
Boersma, Eur Heart J 27:779, 2006
Brass, Stroke 31:1802, 2000
Bueno, Eur Heart J 26:1705, 2005
Capodanno, J Am Coll Cardiol 56:1683, 2010
Bleeding Risk

- ↑ Bleeding propensity in older adults
 - ? Age-related vasculopathy involving small hemostasis – maintaining vessels → impaired vascular healing
 - ? Loss of anatomic vasoreactivity
 - ? Immune incompetence

- Patient factors
 - Anemia, renal dysfunction, heart failure, diabetes
 - Female sex, low body weight, prior Hx bleeding, peripheral vascular disease

- Catheter-based interventions

- Inappropriate dosing of anticoagulants (weight, renal function based)

*Alexander, JAMA 294:3108, 2005
Nikolsky, Eur Heart J 28:1936, 2007*
Clinical Pearls: STEMI in Older Adults

• Community systems for acute reperfusion

• Geriatric dosing of guideline-directed medical therapies
 • Altered pharmacokinetics (due to renal and/or hepatic dysfunction, reduced muscle mass, reduced volume of distribution)
 • Altered pharmacodynamics (↑ risk of bleeding, hypotension)

• Avoidance of bleeding complications

• Early mobilization, referral to cardiac rehabilitation

• Communication/information in care transitions

Kripalani, JAMA 297:831, 2007
Suaya, J Am Coll Cardiol 54:25, 2009
Anticoagulant/Antiplatelet Therapy and ACS

- Acute coronary syndromes
 - Challenge of dual antiplatelet therapy after PCI/stent in older adults anticoagulated for AF
 - Clopidogrel + oral anticoagulant as effective as triple therapy in preventing MI/coronary death, ischemic stroke, bleeding
 - TRILOGY ACS – prasugrel vs clopidogrel for planned medical management after MI
 - Baseline frailty assessment ≥ age 65 → independently associated with ↑ CV death, MI, stroke
 - Need early targeted follow-up with multimorbidity, frailty

Lamberts, J Am Coll Cardiol 62:981, 2013
Dewilde, Lancet 381:1107, 2013
White, Eur Heart J Acute Cardiovascular Care 5:231, 2016
Heart Failure and Older Adults (1)

- HF predominantly disease of older adults
 - Inadequately recognized and treated
 - Symptoms incorrectly attributed to aging, other conditions

- Special issues older adults
 - 3-4% blacks carry allele of serum protein transthyretin (TTR V_{122}I) → ↑ risk amyloid HF
 - ↑ Risk hyperkalemia with pharmacotherapy due to underestimation renal dysfunction
 - ↑ Natriuretic peptides with ↑ age limits diagnostic utility
 - ↑ Risk digoxin toxicity
 - ↑ Association of AF with HF
Heart Failure and Older Adults (2)

- Mechanical circulatory support as destination therapy
 - Requires expert multidisciplinary team evaluation
 - Age ≥ 80 years relative contraindication

- Comprehensive discharge planning, post-discharge support, advance directives, palliative care

- Heart failure with preserved EF
 - Predominantly disorder of older women
 - No proven effective therapy

Peura, Circulation 126:2648, 2012
Heart Failure Trials and Older Adults

- Heart failure
 - PARADIGN-HF – RCT EF ≤ 40% enalapril vs valsartan + neprilysn inhibitor sacubitril
 - ↓ CVD death, HF hospitalizations, all-cause mortality
 - Similar benefit valsartan/sacubitril > 65 years and ≥ 75 years as in younger
 - ICD ≥ age 75 – controversial
 - Individualize selection
 - Mechanical circulatory support
 - ↑ Outcome carefully selected older adults
 - ↑ Complications vs younger patients
 - Frailty predicts worse outcome

McMurray, NEJM 371:993:2014
Barra, Europace 17:174, 2015
Rosenbaum, J Card Fail 20:161, 2014
Valvular Disease and Older Adults

- Calcific AS most common valvular disease
 - Often coexists with CAD, PAD
 - Disease progression more rapid in elderly
 - ↑ Progression with smoking, dyslipidemia, diabetes, HTN
 - Signs and symptoms difficult to recognize
 - ↓ Physical activity with aging
 - Symptoms attributed to other conditions

- Mechanical vs bioprosthetic AVR
 - Durability of valve vs bleeding risk anticoagulation
 - Generally favors bioprosthetic valve

- Despite ↑ perioperative morbidity, mortality at older age → ↑ gain long-term survival, QOL
AVR: Increasing Application and Greater Success

Increase in Aortic Valve Replacement In Last Decade By Age

Declining Mortality Over Time with AVR

Barreto-Filho, JAMA 310:2078, 2013
TAVR and Older Adults

- Transcatheter aortic valve replacement

- Surgically inoperable or very high surgical risk cohorts – median age 84
- ↑ Long-term survival TAVR vs standard surgical AVR
- TVT (transcatheter valve therapy) Registry (> 30,000 TAVR patients)
 - 7.0% 30 day mortality
 - 23.7% 1 year mortality
 - 4.1% stroke rate
- STS/ACC TVT Registry: Benefit even in nonagenarians
- STS score ≥ 15, frailty, porcelain aorta, prior chest radiation → ↓ likelihood TAVR benefit
- Registry collecting baseline, longitudinal frailty, activity limitation assessments
 - Enable risk-adjusted mortality model → aid informed decisions by heart team, patients

Smith, NEJM 364:2187, 2011
Adams, NEJM 371:967, 2014
Kodali, NEJM 366:1686, 2012
Arsalan, J Am Coll Cardiol 67:1387, 2016
Atrial Fibrillation and Older Adults

- Atrial fibrillation
 - Median age AF patients 75 years, 35% > age 80
 - 9% prevalence in elderly
 - Oral anticoagulation with \(\text{CHA}_2\text{D}_2 \) - \(\text{VASc} \) score > 2
 - Warfarin or new oral anticoagulants
 - Age > 75 → score of 2
 - BAFTA – aspirin or warfarin (MD discretion) ≥ 75 years
 - 3.8% 1 year aspirin vs 1.8% 1 year warfarin stroke
 - No difference major hemorrhage
 - NOAC metaanalysis
 - Efficacy equal or superior to warfarin in elderly in ↓ stroke risk
 - ↓ Major bleeding, ↓ risk intracranial hemorrhage

Geriatric Cardiology: Octogenarian Pearls

January, Circulation 130:2071, 2014
Geriatric Cardiology: Octogenarian Pearls

Device-Based Therapy for Cardiac Rhythm Abnormalities and Older Adults

- Pacemakers
 - Sinus node pacemaker cells ↓ with age (<10% functional by age 75)
 - >75% pacemaker recipients ≥ age 65, ½ > age 75
 - Similar indications implantation older, younger age

- ICD efficacy similar in older, younger patients
 - Consider life expectancy, lifestyle factors, QOL, personal preferences
 - Discuss deactivation at end-of-life

- CRT reasonable to improve functional capacity, QOL with advanced HF

Epstein, J Am Coll Cardiol 61:e6, 2013
Delnoy, Am Heart J 155:746, 2008
Abdominal Aortic Aneurysm and Peripheral Arterial Disease

- Screen for AAA in males 65-75 who smoked, with FH AAA, multiple CV risk factors, CAD or PAD

- PAD in $\geq 30\%$ older adults
 - Often asymptomatic
 - RF modification important as PAD \rightarrow ↑ CV mortality risk
 - Age >70 independent RF for PAD
 - Limitations of ABI for diagnosis (non-compressible arteries)
 - Hall walks valuable to assess functional capacity, response to therapy

Rooke, J Am Coll Cardiol 58:2020, 2011
Venous Thromboembolism/Pulmonary Embolism

- 1% annually in very old – 10x greater than younger persons
 - Associated with immobility
 - Aggressive prophylaxis and early mobilization in hospital

- PE presents more often as syncope at elderly age
 - ↑ Hospital mortality (10-30%) vs younger adults

Timmons, Age Ageing 32:601, 2003
Lopez-Jimenez, Haematologica 91:1046, 2006
Geriatric Cardiology: Octogenarian Pearls

Cerebrovascular Disease and Stroke (1)

- Older adults at ↑ risk adverse outcomes from stroke
 - Also ↑ risk pharmacologic, percutaneous, surgical interventions

- Ischemic stroke most common
 - Effectiveness IV TPA not well established
 - Exclusion criteria TPA: >80 years, taking oral anticoagulants, NIH Stroke Scale score >25, history of stroke and DM
 - Role of decompressive surgery for malignant cerebral edema > age 60 uncertain

Morgenstern, Stroke 41:2108, 2010
Brott, J Am Coll Cardiol 60:566, 2012
Jauch, Stroke 44:870, 2013
Wijdicks, Stroke 45:1222, 2014
Geriatric Cardiology: Octogenarian Pearls

Cerebrovascular Disease and Stroke (2)

• Primary stroke prevention
 • Aggressive BP management plus antithrombotic prophylaxis in patients with AF
 • Screen women >75 for AF
 • Carotid duplex screening before elective CABG > age 65

• Secondary ischemic stroke prevention
 • Apixiban 5 mg bid as alternative to warfarin or aspirin with nonvalvular AF
 • Without age ≥ 80, weight ≤ 60kg, creatinine ≥ 1.5 mg/dL
 • Compare risk of thromboembolism vs risk recurrent ICH in restarting antithrombotic Rx after ICH
 • > Age 70 carotid endarterectomy → ↑ outcome vs carotid stenting

Goldstein, Stroke 42:517, 2011
Bushnell, Stroke 45:1545, 2014
Furie, Stroke 43:3442, 2012
Kernan, Stroke 45:2160, 2014
Geriatric Cardiology: Octogenarian Pearls

Geriatric Risk Assessment – Lack of Metrics to Incorporate:

- Multimorbidity
- Frailty – grip strength, gait speed
- Sarcopenia – fall history, orthostasis
- Cognitive impairment
- Functionality: maintenance of independence, avoidance of dependency
- Social limitations, stressors
- Requires expertise to incorporate physiologic age with biologic age

Boyd, J Gen Intern Med 29:552, 2014
Fried, J Gerontol A Biol Med Sci 56:M146, 2001
Studenski, JAMA, 305: 50, 2011
Nasreddine, J Am Geriatr Soc 53:695, 2005
Borson, Int J Geriatr Psychiatry 15:2012, 2000
Patient-Centered Approach (1)

- Management personalized to each patient’s situation
- Assess CV risk in context of aggregated age-related risk
 - Determine realistic goals incorporating each patient’s overall health circumstances re risk-benefit of care options
 - noncardiac comorbidities
 - functional capacity
 - quality of life factors
- Select patients most likely to benefit from therapy
- Assess utility of diagnostic testing relative to overall treatment goals
 - Simple vs complex, expensive testing
 - Impact, consequences of test results
Patient-Centered Approach (2)

- Incorporate patient preferences into care plan
 - End-of-life preferences
 - Advance directives
 - Durable power of attorney for health care
 - Discussion of palliative care options

- Initiate when stable (at ambulatory care encounter)
 - Teach patients, families about reasonable expectations
Cardiovascular Care of Older Adults: Lessons I Have Learned (1)

1. Tsunami of aging worldwide
 - US – 20% of population > 65 by 2030
 - Tripling of subgroup > 85 by 2050

2. CV disease occurrence and adverse outcomes ↑ with aging

3. Physiologic changes of aging ↑ vulnerability to CV disease
 - Most individuals > 75 demonstrate clinical effects of aging on CV system
 - Vulnerabilities accentuated by traditional CV risk factors
 - Routine assessment needed of cognitive function, independence, frailty

4. Concurrent aging changes in other organ systems ↓ aged individual’s capacity to respond to stress
 - ↑ Risk for complications
 - ↓ Prognosis

5. Disproportionate age-related therapeutic risk
 - But absolute mortality benefits may outweigh morbidity, mortality risks
Cardiovascular Care of Older Adults: Lessons I Have Learned (2)

6. QOL, function, independence, avoidance of adverse events more significant endpoints in older CVD patients, e.g.,
 • ↓ Hospitalizations more important than lack of effect on mortality
 • “Superior” antiplatelet regimen → ↑ bleeding complications

7. Patient-centered treatment goals needed
 • Routine assessment of cognition, caregiver/family dynamics, pharmacologic interactions, comorbid complications

8. Adverse drug events → @ 30% of hospital admissions of older adults

9. Thresholds for invasive interventions, Strategies to minimize adverse events
 • Incorporate complex comorbidities into risk/benefit ratios

10. Attention to specific CV syndromes predominating in seniors (e.g., isolated systolic hypertension, heart failure with preserved ejection fraction)
Summary

- Mainstream cardiology has become geriatric cardiology

- What we must learn, acquire
 - Systematic approach incorporating age-related complexities into routine clinical decision-making
 - Adaptation of standards of evidence-based care to older patients
 - Synthesis of multisystem aging, comorbidities, polypharmacy, psychosocial factors, personal preferences → individualized approach to care