

Nanette K. Wenger, MD, MACC, MACP, FAHA
Professor of Medicine (Cardiology)
Emory University School of Medicine
Consultant, Emory Heart & Vascular Center
Atlanta, Georgia

DISCLOSURE STATEMENT Nanette Kass Wenger, M.D.

Name of Commitment

Research Grants/Contracts/Trial Steering Committee/Trial Data Safety and Monitoring Board

Consultantship

Name of Organization

Alnylam Pharmaceuticals, Gilead Sciences, NHLBI, Pfizer, Society for Women's Health Research

Amgen, AstraZeneca, Gilead Sciences, Merck

Cultural Resources for Positive Images

- "Old people are as valuable as precious stones"
 Chinese
- "Retirement is like a second childhood"

Italian

 "He who has not an old man [in his household] let him buy one"

Lebanese

 "Aging is like a tree in the fall: the leaves fall off, but the trunk is still strong"

Swedish

- "The old pan is the one that makes good food" Portugese
- "The heart doesn't age; only the skin shrivels"
 Spanish

Why is the Demography Important? (1)

- Unprecedented growth of elderly population worldwide aging predisposes to cardiovascular disease (CVD)
 - 19% US population > 65 by 2030
 - 19 million > age 85
 - Globally > age 85 ↑ 151% 2005→2030
- Prototype U.S. cardiology patient an older adult
- Benchmarks: > 75 old age> 85 very old age
 - Aging changes → clinically relevant differences in physiology, organ function, reserves

Why is the Demography Important? (2)

- Population > age 65
 - > 85% CV disease deaths
 - 65% CV disease hospitalizations
 - 62% MI hospitalizations
 - 77% HF hospitalizations
- Attributable CV risk highest in senior population
 - Greatest potential to favorably affect morbidity, mortality
 - Counterbalanced by increased iatrogenic risks

What is Geriatric Cardiology?

- Geriatric cardiology = practice of CV medicine adapted to needs, complexities of older adults
 - Multimorbidity
 - 68% have > 2 chronic conditions
 - Polypharmacy
 - Frailty
 - Cognitive impairment
 - Functional status/disability
 - Social, financial, psychological dimensions of aging
- Patient-centered care required to embrace complexity

Geriatric Cardiology Issues

- Few data-driven studies to guide care for this vulnerable population
 - Patients outlived current data-driven recommendations
- Transformative effect of aging on CVD
 - Capacity to tolerate, desire medications, devices, procedures vs younger patients
- Co-existing conditions affect health-related QOL, survival
- Patient-centered outcomes, priorities vs disease-specific outcomes

Essentials of Cardiovascular Care for Older Adults (ECCOA) Curriculum

- Designed for cardiovascular specialists and other clinicians who care for older patients with cardiovascular disease.
- Teaches practitioners key features of aging that directly impact CVD to improve care and quality of life in this rapidly growing segment of the cardiovascular patient population.
- 17 ABIM MOC Part II points

Essentials of Cardiac Care for Older Adults (ECCOA)

- Online curriculum
 - www.acc.org/ECCOA
- Available to all practitioners.
- Each module takes ~30 minutes to complete
- 15 modules in total
- Provides 17 CME/CNE (Nursing)/CPE (Pharmacists) credits & MOC credits!
- Curriculum is FREE to all providers!

Modules

- Cardiovascular
 Physiology in the Older
 Adult
- Pharmacology for Older Adults
- Care of Older Adults
- Decision Making for Older Adults
- Heart Failure in Older Adults
- Chronic Coronary Disease in Older Adults
- Acute Coronary Syndromes in Older Adults

- Electrophysiology and Heart Rhythm Disorders in Older Adults
- Syncope in Older Adults
- Perioperative Care in Older Adults
- Palliative Care in Older Adults
- Prevention in Older Adults
- Vascular Disease in Older Adults
- Valvular Disease in Older Adults

CV Changes of Aging Increase Susceptibility to CV Disease

- ↑ Central arterial stiffness → ↑ afterload
- ↓ Endothelial function → ↓ vd
- ↓, Delayed early diastolic filling → ↑ dependence on "atrial kick"
- ↓ SA node pacemaker cells → sick sinus syndrome
- ↓ Aerobic capacity (↓ VO₂ max)
- ↓ β adrenergic responsiveness
- ↓ Preconditioning benefit
- ↓ Angiogenesis

Diagnostic Assessment

- Typical CV symptoms: chest pain, dyspnea, dizziness, exercise intolerance
 - Less specific with age-related physiologic attrition
 - > 50% patients have 5 or more coexisting chronic conditions
- CVD underestimated
 - Treatment delays notorious
 - Utilities of therapies uncertain
- CVD also overdiagnosed, overtreated
 - Imaging studies reflect age-related vasculature, physiologic changes
 - Unrelated to presenting complaint, e.g., geriatric syndromes of falls, dizziness, syncope, weakness

EMORY HEART & VASCULAR CENTER

Clinical Examples

- Dx atrial fibrillation simple
 - Complex is decision which 85 year old should receive anticoagulants, which agent to use
- Dx severe aortic stenosis frequent, established criteria
 - Complex is assessment of frailty, multimorbidity prohibitive of TAVR
- Clinical, angiographic indications for PCI established
 - Complex is decision when dementia, multimorbidity precludes use

Goals of Care at Elderly Age (1)

- RCTs often assess mortality endpoints
 - Elderly patients may not view length of life as highest priority
- Health goals of elderly patients with chronic illness
 - Independence in daily living
 - Functional capacity: ability to ambulate
 - ↓ Hospitalizations
 - J Symptoms (prolongation of symptom-free life)
- Concerns: psychosocial/financial burdens personal and family

Goals of Care at Elderly Age (2)

- Elderly patients may not perceive RCT endpoints as beneficial
 - Manner and quality of death
 - ICD prevents sudden, painless death
 - Death from CHF, MI, cancer, noncardiac causes
 - ICDs rarely deactivated in hospice care

Contemporary Care Extrapolation from Evidence-Based Guidelines

- Pitfalls of disease-specific guidelines for elderly patients with multiple conditions
 - Data > age 80 virtually absent
- RCTs exclude elderly participants and when included systematically exclude those with comorbidities, complexities
- Elderly in RCTs ≠ community elderly
- Evidence-based care less certain

Perioperative Management for Non-Cardiac Surgery (1)

- Revised Cardiac Risk Index (RCRI)
 - Hx ischemic heart disease
 - Hx CHF
 - Hx stroke or TIA
 - Hx diabetes requiring preoperative insulin use
 - CKD (creatinine > 2mg/dL)
 - Undergoing suprainguinal vascular, intraperitoneal, or intrathoracic surgery
- Risk for cardiac death, MI, HF, cardiac arrest, heart block
 - 0 predictors 0.4%
 - 1 predictor 0.9%
 - 2 predictors 6.6%
 - \geq 3 predictors \geq 11%

Perioperative Management for Non-Cardiac Surgery (2)

- Rate of surgery up to 4-fold higher in older adults
 - Age ≥ 80 years independent predictor perioperative complications, death
 - Functional status, comorbidities rather than age alone determinants perioperative risk
- RCRI does not address baseline frailty, cognitive function, multimorbidity
- Perioperative complications →
 - † Length of stay
 - † Likelihood discharge to transitional care or chronic care facility
 - ↑ Risk disability, dependency
 - Uquality of life
 - Likelihood recovery to preoperative physical, mental function

Perioperative Management for Non-Cardiac Surgery (3)

- Delirium in 15-53% older surgical patients (70-87% in ICU)
 - May → persistent cognitive deficits, functional decline
- Atrial arrhythmias, especially AF
 - Valve surgery > CABG > thoracic surgery > nonthoracic surgery
 - ↑ Stroke risk, ↑ hospital stay
- Inadequate pain control as well as excessive analgesics →
 - ↑ Risk perioperative complications

Cardiovascular Prevention at Elderly Age: Is it Ever Too Late?

Patient-centered approach: INDIVIDUALIZE!

87 year old woman No known CVD BP = 160/90 mmHg HgbA_{1c} = 7.9 LDL-C = 150 mg/dL

Hypertension in Older Adults (1) The Epidemic

Hypertension in Older Adults (2)

- ISH and widened pulse pressure ↑ with age
 - → Greater risk than diastolic HTN for coronary events, stroke, AF, HF, kidney disease, dementia
- Goal BP ???
- Pharmacologic management
 - Start low, go slow
 - Include lifestyle modifications

Physical Activity

- - ↓ Aerobic functional capacity → ↑ mortality risk
- Aerobic and strength training ameliorate decline in age-related aerobic capacity (peak VO₂), diastolic dysfunction
- Physical activity → improvements in
 - BP
 - Lipid profile
 - Glucose control
 - Osteoarthritis symptoms
 - Neurocognitive function
 - Exercise capacity
 - Quality of life
 - Independence

Statin Use at Elderly Age

- Impressive array of trials of efficacy, safety → statins ↓
 mortality for older adults, ↓ CHD events, stroke and DVT
- JUPITER
 - Elderly patients had greater rosuvastatin benefit than patients < 70
- Relevant aging dynamics
 - ? Eighth pill in complex regimen
 - ? Nebulous muscle aches, ↓ mobility
 - ? Medication costs

SIHD in Older Adults (1)

- Older adults have high prevalence of 3-vessel and left main disease
- Atypical symptoms angina common
 - Nausea, vomiting, mid-epigastric discomfort, ↓ activity tolerance
- Pharmacologic testing a more useful option than exercise stress testing: diagnosis and prognosis
- Same guideline-based secondary prevention as younger adults
- Cardiac catheterization/revascularization with high risk, refractory symptoms on optimal medical therapy: consider
 - Individual risks and benefits
 - Comorbidities
 - Goals of care
 - Current vs expected level of function

SIHD in Older Adults (2)

- Marked ↑ PCI ≥ 75 years in past 25-30 years
- Despite ↑ bleeding, stroke risk PCI in older patients, comparable angiographic success, clinical benefits to younger patients
 - Absolute benefit may be greater in older patients
- CABG patients ≥ age 80 have greater extent/severity CAD, ↑ LV dysfunction,
 ↑ concomitant valve disease, prior cardiac surgery
 - † Comorbidities not in many surgical risk scores
 - Euro SCORE II includes poor mobility
 - STS score incorporates gait speed as surrogate for frailty
 - None assess functional capacity or dementia
 - ↑ Operative mortality (2x↑) in octogenarians, discharge home ½ that of younger patients

ACS in Older Adults (1)

- 35% myocardial infarctions in US in patients 75 and older (11% of patients > age
 85)
- STEMI less common than NSTEMI in older adults, although absolute numbers of STEMI ↑ with ↑ age
- Older patients, particularly older women, often present with non-chest pain ischemic symptoms
 - "GI symptoms" of nausea, vomiting, abdominal discomfort represent myocardial ischemia
 - Also common: severe dyspnea, fatigue, dizziness, syncope
 - Confusion, altered cognition
- EKG diagnosis often complicated by
 - Abnormal baseline EKG LVH, prior MI, AF, conduction disease
 - STEMI presenting with new LBBB more common at advanced age

ACS in Older Adults (2)

- PCI favored over fibrinolytic therapy (at least to age 80) to ↓ 30-day mortality
 - Particular benefit anterior MI presenting > 6 hr after symptom onset, shock
 - ↓ Hemorrhagic stroke PCI vs fibrinolytic therapy
 - Fibrinolytic Rx associated with ↑ risk myocardial rupture ≥ age 75
 (17% vs 5% with PCI)
 - Major primary PCI benefit is \(\psi\) recurrent ischemic events, \(\psi\) need subsequent target vessel revascularization
- NSTEMI: Greater absolute benefit early invasive management vs younger adults
 - Higher risk adverse outcomes with conservative management

Bueno, Eur Heart J 32:51, 2011 Boersma, Eur Heart J 27:779, 2006 Brass, Stroke 31:1802, 2000 Bueno, Eur Heart J 26:1705, 2005 Capodanno, J Am Coll Cardiol 56:1683, 2010 Tegn, Lancet 387:1057, 2016

Bleeding Risk

- † Bleeding propensity in older adults
 - ? Age-related vasculopathy involving small hemostasis maintaining vessels → impaired vascular healing
 - ? Loss of anatomic vasoreactivity
 - ? Immune incompetence
- Patient factors
 - Anemia, renal dysfunction, heart failure, diabetes
 - Female sex, low body weight, prior Hx bleeding, peripheral vascular disease
- Catheter-based interventions
- Inappropriate dosing of anticoagulants (weight, renal function based)

Clinical Pearls: STEMI in Older Adults

- Community systems for acute reperfusion
- Geriatric dosing of guideline-directed medical therapies
 - Altered pharmacokinetics (due to renal and/or hepatic dysfunction, reduced muscle mass, reduced volume of distribution)
 - Altered pharmacodynamics (↑ risk of bleeding, hypotension)
- Avoidance of bleeding complications
- Early mobilization, referral to cardiac rehabilitation
- Communication/information in care transitions

Anticoagulant/Antiplatelet Therapy and ACS

- Acute coronary syndromes
 - Challenge of dual antiplatelet therapy after PCI/stent in older adults anticoagulated for AF
 - Clopidogrel + oral anticoagulant as effective as triple therapy in preventing MI/coronary death, ischemic stroke, bleeding
 - TRILOGY ACS prasugrel vs clopidogrel for planned medical management after MI
 - Baseline frailty assessment ≥ age 65 → independently associated with ↑ CV death, MI, stroke
 - Need early targeted follow-up with multimorbidity, frailty

Heart Failure and Older Adults (1)

- HF predominantly disease of older adults
 - Inadequately recognized and treated
 - Symptoms incorrectly attributed to aging, other conditions
- Special issues older adults
 - 3-4% blacks carry allele of serum protein transthyretin (TTR V₁₂₂I) → ↑
 risk amyloid HF
 - ↑ Risk hyperkalemia with pharmacotherapy due to underestimation renal dysfunction
 - ↑ Natriuretic peptides with ↑ age limits diagnostic utility
 - ↑ Risk digoxin toxicity
 - ↑ Association of AF with HF

Heart Failure and Older Adults (2)

- Mechanical circulatory support as destination therapy
 - Requires expert multidisciplinary team evaluation
 - Age ≥ 80 years relative contraindication
- Comprehensive discharge planning, post-discharge support, advance directives, palliative care
- Heart failure with preserved EF
 - Predominantly disorder of older women
 - No proven effective therapy

Heart Failure Trials and Older Adults

- Heart failure
 - PARADIGN-HF RCT EF ≤ 40% enalapril vs valsartan + neprilysn inhibitor sacubitril
 - ↓ CVD death, HF hospitalizations, all-cause mortality
 - Similar benefit valsartan/sacubitril > 65 years and ≥ 75 years as in younger
 - ICD ≥ age 75 controversial
 - Individualize selection
 - Mechanical circulatory support
 - ↑ Outcome carefully selected older adults
 - † Complications vs younger patients
 - Frailty predicts worse outcome

Valvular Disease and Older Adults

- Calcific AS most common valvular disease
 - Often coexists with CAD, PAD
 - Disease progression more rapid in elderly
 - † Progression with smoking, dyslipidemia, diabetes, HTN
 - Signs and symptoms difficult to recognize

 - Symptoms attributed to other conditions
- Mechanical vs bioprosthetic AVR
 - Durability of valve vs bleeding risk anticoagulation
 - Generally favors bioprosthetic valve
- Despite ↑ perioperative morbidity, mortality at older age → ↑ gain longterm survival, QOL

AVR: Increasing Application and Greater Success

TAVR and Older Adults

- Transcatheter aortic valve replacement
 - Surgically inoperable or very high surgical risk cohorts median age 84
 - † Long-term survival TAVR vs standard surgical AVR
 - TVT (transcatheter valve therapy) Registry (> 30,000 TAVR patients)
 - 7.0% 30 day mortality
 - 23.7% 1 year mortality
 - 4.1% stroke rate
 - STS/ACC TVT Registry: Benefit even in nonagenarians

 - Registry collecting baseline, longitudinal frailty, activity limitation assessments
 - Enable risk-adjusted mortality model → aid informed decisions by heart team, patients

Atrial Fibrillation and Older Adults

- Atrial fibrillation
 - Median age AF patients 75 years, 35% > age 80
 - 9% prevalence in elderly
 - Oral anticoagulation with CHA₂D₂ VASc score > 2
 - Warfarin or new oral anticoagulants
 - Age > 75 → score of 2
 - BAFTA aspirin or warfarin (MD discretion) ≥ 75 years
 - 3.8% 1 year aspirin vs 1.8% 1 year warfarin stroke
 - No difference major hemorrhage
 - NOAC metaanalysis
 - Efficacy equal or superior to warfarin in elderly in ↓ stroke risk
 - ↓ Major bleeding,
 ↓ risk intracranial hemorrhage

Device-Based Therapy for Cardiac Rhythm Abnormalities and Older Adults

- Pacemakers
 - Sinus node pacemaker cells \(\) with age (<10% functional by age 75)
 - >75% pacemaker recipients ≥ age 65, ½ > age 75
 - Similar indications implantation older, younger age
- ICD efficacy similar in older, younger patients
 - Consider life expectancy, lifestyle factors, QOL, personal preferences
 - Discuss deactivation at end-of-life
- CRT reasonable to improve functional capacity, QOL with advanced HF

Abdominal Aortic Aneurysm and Peripheral Arterial Disease

- Screen for AAA in males 65-75 who smoked, with FH AAA, multiple CV risk factors, CAD or PAD
- PAD in ≥ 30% older adults
 - Often asymptomatic
 - RF modification important as PAD → ↑ CV mortality risk
 - Age >70 independent RF for PAD
 - Limitations of ABI for diagnosis (non-compressible arteries)
 - Hall walks valuable to assess functional capacity, response to therapy

Venous Thromboembolism/Pulmonary Embolism

- 1% annually in very old 10x greater than younger persons
 - Associated with immobility
 - Aggressive prophylaxis and early mobilization in hospital
- PE presents more often as syncope at elderly age
 - † Hospital mortality (10-30%) vs younger adults

Cerebrovascular Disease and Stroke (1)

- Older adults at ↑ risk adverse outcomes from stroke
 - Also ↑ risk pharmacologic, percutaneous, surgical interventions
- Ischemic stroke most common
 - Effectiveness IV TPA not well established
 - Exclusion criteria TPA: >80 years, taking oral anticoagulants, NIH Stroke Scale score >25, history of stroke and DM
 - Role of decompressive surgery for malignant cerebral edema
 age 60 uncertain

Morgenstern, Stroke 41:2108, 2010 Brott, J Am Coll Cardiol 60:566, 2012 Jauch, Stroke 44:870, 2013 Wijdicks, Stroke 45:1222, 2014

Cerebrovascular Disease and Stroke (2)

- Primary stroke prevention
 - Aggressive BP management plus antithrombotic prophylaxis in patients with AF
 - Screen women >75 for AF
 - Carotid duplex screening before elective CABG > age 65
- Secondary ischemic stroke prevention
 - Apixiban 5 mg bid as alternative to warfarin or aspirin with nonvalvular AF
 - Without age ≥ 80, weight ≤ 60kg, creatinine ≥ 1.5 mg/dL
 - Compare risk of thromboembolism vs risk recurrent ICH in restarting antithrombotic Rx after ICH
 - > Age 70 carotid endarterectomy → ↑ outcome vs carotid stenting

Goldstein, Stroke 42:517, 2011 Bushnell, Stroke 45:1545, 2014 Furie, Stroke 43:3442, 2012 Kernan, Stroke 45:2160, 2014

Geriatric Risk Assessment – Lack of Metrics to Incorporate:

- Multimorbidity
- Frailty grip strength, gait speed
- Sarcopenia fall history, orthostasis
- Cognitive impairment
- Functionality: maintenance of independence, avoidance of dependency
- Social limitations, stressors
- Requires expertise to incorporate physiologic age with biologic age

Boyd, J Gen Intern Med 29:552, 2014
Fried, J Gerontol A Biol Med Sci 56:M146, 2001
Studenski, JAMA, 305: 50, 2011
Nasreddine, J Am Geriatr Soc 53:695, 2005
Borson, Int J Geriatr Psychiatry 15:2012, 2000
Amer Geriatr Soc Beers Criteria UpdateExpert Panel, J Am Geriatr Soc 60:616, 2012

Patient-Centered Approach (1)

- Management personalized to each patient's situation
- Assess CV risk in context of aggregated age-related risk
 - Determine realistic goals incorporating each patient's overall health circumstances re risk-benefit of care options
 - noncardiac comorbidities
 - functional capacity
 - quality of life factors
 - Select patients most likely to benefit from therapy
- Assess utility of diagnostic testing relative to overall treatment goals
 - Simple vs complex, expensive testing
 - Impact, consequences of test results

Patient-Centered Approach (2)

- Incorporate patient preferences into care plan
 - End-of-life preferences
 - Advance directives
 - Durable power of attorney for health care
 - ? Discussion of palliative care options
- Initiate when stable (at ambulatory care encounter)
 - Teach patients, families about reasonable expectations

Cardiovascular Care of Older Adults: Lessons I Have Learned (1)

- 1. Tsunami of aging worldwide
 - US 20% of population > 65 by 2030
 - Tripling of subgroup > 85 by 2050
- 2. CV disease occurrence and adverse outcomes ↑ with aging
- 3. Physiologic changes of aging ↑ vulnerability to CV disease
 - Most individuals > 75 demonstrate clinical effects of aging on CV system
 - Vulnerabilities accentuated by traditional CV risk factors
 - Routine assessment needed of cognitive function, independence, frailty
- 4. Concurrent aging changes in other organ systems ↓ aged individual's capacity to respond to stress
 - ↑ Risk for complications
- 5. Disproportionate age-related therapeutic risk
 - But absolute mortality benefits may outweigh morbidity, mortality risks

Cardiovascular Care of Older Adults: Lessons I Have Learned (2)

- QOL, function, independence, avoidance of adverse events more significant endpoints in older CVD patients, e.g.,
 - ? ↓ Hospitalizations more important than lack of effect on mortality
 - ? "Superior" antiplatelet regimen →↑ bleeding complications
- Patient-centered treatment goals needed
 - ? Routine assessment of cognition, caregiver/family dynamics, pharmacologic interactions, comorbid complications
- 8. Adverse drug events \rightarrow @ 30% of hospital admissions of older adults
- 9. ? Thresholds for invasive interventions, ? Strategies to minimize adverse events
 - ? Incorporate complex comorbidites into risk/benefit ratios
- Attention to specific CV syndromes predominating in seniors (e.g., isolated systolic hypertension, heart failure with preserved ejection fraction)

Summary

- Mainstream cardiology has become geriatric cardiology
- What we must learn, acquire
 - Systematic approach incorporating age-related complexities into routine clinical decision-making
 - Adaptation of standards of evidence-based care to older patients
 - Synthesis of multisystem aging, comorbidities, polypharmacy, psychosocial factors, personal preferences → individualized approach to care