Coronary Microvascular Dysfunction: Is it a pre HFpEF syndrome?

Carl J. Pepine, MD, MACC, FESC
Division of Cardiovascular Medicine
University of Florida
Gainesville, FL
<table>
<thead>
<tr>
<th>Carl J. Pepine, MD, MACC, FESC</th>
</tr>
</thead>
</table>

Consultant: Amgen, AstraZeneca, Bayer HealthCare, BioCardia, Foundation for Accreditation of Cellular Therapy, Gilead, Merck, Norvartis, Sanofi, Servier, SLACK Inc., XyloCor.

Speakers Bureau: None

Stock Shareholder: None

Other Financial or Material Support: Holds two patents with the University of Florida.
Evidence linking ischemia due to CMD with HFpEF

Talking Points:
• General considerations
• Clinical phenotypes-CMD patients and HFpEF patients
• Clinical outcomes with CMD
• Mechanistic signals- paradigm shift:
 • Endothelium, microvasculature, cardiomyocyte function
 • Biomarkers of injury/dysfunction
• Hypothetical construct centering on inflammation and ischemia due to CMD as a “pre-HFpEF” condition
Is ischemia due to coronary microvascular dysfunction “a bridge” to HFpEF?
Or, is it a bridge to nowhere?
General considerations:

~3-4 M Americans with symptoms/signs of ischemia have no obstructive CAD (NHLBI-WISE, ACC-NCDR, PROMISE, VA-CART, etc.).

- Incur healthcare costs and disabilities similar to those with obstructive CAD, mostly due to hospitalizations for HF and angina (Shaw Circulation 2006, Gulati Ann Int Med 2009, Bakir Int J Cardiol 2017).
- Burdens confirmed by very large European and Canadian consecutive-case registries (Jesperson EHJ 2012, Sedlack AHJ 2014, Kissel BMC Cardiovascular Disorders 2018).

Hypothesis: Ischemia due to CMD represents a “pre-HFpEF” condition (Pepine JACC:Cardiovascular Imaging 2014).
Microvascular Ischemia-HFpEF Hypothesis
Pepine JACC:Cardiovascular Imaging 2014;7:362-5

Risk conditions (hypertension, dyslipidemia, dysglycemia, psychosocial stress, estrogen loss, etc.) promote a pro-inflammatory, pro-oxidative state rendering the coronary microvasculature (including large artery vasa-vasorum) and myocardium vulnerable to dysregulation.

Dysregulation of the coronary microcirculation, central nervous system and hypothalamic-pituitary-adrenal axis (endothelial dysfunction, vascular smooth muscle activation, sympathetic activation, epinephrine secretion, etc.) limit the ability to augment coronary flow, resulting in repeated and/or prolonged ischemia and stunning of the subendocardium and mid-wall (without symptoms).

Ongoing ischemia-reperfusion facilitates ischemic preconditioning preserving cardiomyocyte contractile and coronary microvascular function against further ischemic injury but progressively impairing cardiomyocyte relaxation, leading to LV diastolic dysfunction with further coronary microvascular dysfunction.

Clinically, this sequence contributes to LV diastolic dysfunction leading to heart failure with preserved ejection fraction (HFpEF) and eventually also impairs systolic function.
Evidence linking ischemia due to CMD with HFpEF

Multi-morbidity -- hallmark of CMD patients

Multiple comorbid conditions:
- Middle aged (40-65 yrs old)
- Women are the majority
- Hypertension (70-80%), other insulin resistant states (obesity, DM, etc.)
- Hypecholesteremia
- Chronic disorders [GI, neuropsych, lung, renal diseases (dysmotility, migraine, anxiety/depression, asthma, OSA, PAH, CKD, etc.)]
- Generally stable IHD symptoms with “exacerbations/flares” (ACS)
- Dyspnea, LV diastolic dysfunction (EDP, echo, cMRI)
- Coronary endothelial dysfunction (Ach) and VSM dysfunction (Ado)
- Central aortic stiffening
Evidence linking ischemia due to CMD with HFpEF

Multi-morbidity -- hallmark of HFpEF patients

Multiple comorbid conditions:
- Advanced age (>60 yrs old)
- Women are the majority
- Hypertension (80-90%)
- IHD in majority with HFpEF and HFmrEF (EF 40-49%)
- Chronic disorders (Obesity, CKD, DM, lung dis (OSA, PAH, etc.), anemia, AF, etc.)
- Generally stable HF and/or IHD symptoms with “exacerbations” (HF, ACS)
- LV diastolic dysfunction (EDP, echo, cMRI)
- Coronary endothelial dysfunction (Ach) and VSM dysfunction (Adenosine)
- Central aortic stiffening

Interestingly, “clinical phenotype” associated with HFpEF cardiac pathophysiology is remarkably similar to an older CMD patient!
HFpEF: is ischemia due to CMD the underlying mechanism?

Paradigm shift in HFpEF pathophysiology

- Suggested syndrome results from sequence of events initiated by *comorbidity driven proinflammatory state linked with CMD* promoting LVH, remodeling, fibrosis, stiffness. (Paulus and Tschöpe *JACC* 2013;62:263-71)

- Abnormal ex hemodynamics with reduced peak transcardiac O_2 gradient suggested *impaired myocardial O_2 delivery* as cause of abnormal diastolic flow reserve. (van Empel and Borlaug *J Am Heart Assoc* 2014;3:e001293)

- Hypothesis strengthened by postmortem demonstration that HFpEF pts have *less coronary microvascular density* vs pts with noncardiac death. (Mohammed and Redfield *Circulation* 2015;131:550-9)
Impaired CFR by Phase Contrast Cine-MRI in Patients with HFpEF

Coronary sinus (CS) phase contrast (PC) cine-MRI-CFR (index of LV microvascular function) 25 HFpEF pts (age 73±7 yrs), 13 pts HTN LVH (67±10 yrs), and 18 controls (65±15 yrs). Breath-hold PC cine-MRI images of CS assessed blood flow at rest and during ATP infusion. CFR =CS blood flow- during ATP infusion/at rest. Impaired CFR <2.5.

Majority (76%) of HFpEF pts had decreased CFR-vs HTN LVH pts and controls (CFR: 2.21±0.55 in HFpEF vs 3.05±0.74 in HTN LVH, 3.83±0.73 in controls; P<0.001). CFR independently correlated with serum BNP (P=0.007) and significantly lower in HFpEF pts vs HTN LVH pts and controls.

Concluded- impaired CFR a pathophysiological factor for HFpEF, related to disease severity.
Coronary macro and microvascular systems

Coronary microvasculature constitutes *>90% of the coronary vascular bed* and regulates *volume of blood flow* (e.g. O_2 and nutrients with removal of waste products) and *blood flow distribution*.
Coronary Microvascular Dysfunction. In Chronic Coronary Artery Disease a companion to Braunwald's Heart Disease; De Lemos JA and Omland T Editors; Elsevier Philadelphia 2018
Coronary Macrocirculation
- Obstructive
 - Atherosclerosis (CAD)
 - Spasm
 - Dissection
 - Thromboembolism
 - Muscle bridging
 - Etc.
- Non obstructive CAD
 - Same as above

Coronary Microcirculation

Structural Mechanisms
- Capillary rarefaction
- Arteriolar wall thickening
- Perivascular fibrosis
- Conduit vessel stiffening
- Intravascular micro-plugging
- Etc.

Myocardial Mechanisms
- Hypertrophy (LVH)
- Infiltration
- Calcium overload
- Extramural compression
- Increased diastolic pressure
- Etc.

Functional Mechanisms
- EC and/or VSMC dysfunction
- Atherosclerosis risk factors
- Inflammation
- Drugs
- Spasm
- Etc.

Systemic Mechanisms
- Reduced Diastolic Pressure Time
- Anemia
- Hypoxemia
- Glycemia
- Carbon Monoxide
- Etc.
HFpEF: is ischemia due to CMD the underlying mechanism?

Recent support for CMD-impaired myocardial flow in HFpEF
Srivaratharajah *Circ Heart Fail.* 2016;9:e002562

- HFpEF- no obstructive CAD (n=78) or no HF controls (n=298), stratified for HTN (n=186). HFpEF pts more likely older, women w HTN, DM, HLD, AF, anemia and/or CKD.

- Global and regional stress/rest MFR$_{PET}$: HFpEF pts -reduced global MFR (2.16±0.69) vs HTN controls (2.54±0.80, p<0.02) and normotensive controls (2.89±0.70, p<0.001).

- HFpEF pts had 2.62 fold greater odds of lower global MFR (RF adjusted).

HFpEF, without obstructive CAD, is associated with reduced MFR independent of other risk factors.
Considerable Evidence Linked Endothelium with LV Relaxation

• NO produced by endothelial cells lowers LV SP and increases LV diastolic distensibility.
• LV relaxation is modulated by interaction of coronary endothelium derived NO and prostaglandins.
• Endothelial dysfunction decreases LV diastolic distensibility.

HFpEF: is ischemia due to CMD the underlying mechanism?

Biomarkers useful to inform mechanisms and determine prognosis

- **NTproBNP**: HF diagnosis/management and prediction of IHD/CAD and stroke (Lancet Diabetes Endocrinol 2016;4:840-9).

- **IMA**: ischemia diagnosis/management but not cardiac specific.

- **hsTnI**: cardiomyocyte injury in IHD and other disorders (Circulation 2017;135:1911-21).

- **sST2 and galectin-3**: CV stress/tissue fibrosis and prognosis/disease progression (Circulation 2017;135:1911-21).
HFpEF: is ischemia due to CMD the underlying mechanism?

Hypoxic ventricular myocardial biopsies (CABG pts without LV dysfunction), BNP expression, plasma BNP, and proBNP concentrations—all *markedly increased.* *(FASEB J. 2003;17:1105-7)*

Surgical *blood flow reduction* in LV wall of pigs (myocardial \(pO_2 \text{ 46 to 13mmHg}\)) increased BNP mRNA expression. ProBNP peptide accumulated in medium of ventricular myocyte cultures indicating rapid release of newly synthesized proBNP peptide after myocardial hypoxia. *(FASEBJ. 2004;18:1928-30)*

Hypoxia induces BNP release from human cardiomyocyte cell lines. HIF-1 inhibitor rotenone *inhibited BNP.* *(Am J Physiol Heart Circ Physiol 2009;297:H550-5).*

Myocardial ischemia, even without LV dysfunction, augments cardiac BNP gene expression, *increases plasma BNP and proBNP concentrations.* Thus, elevated BNP and proBNP concentrations do not only reflect HF but also result from *cardiac ischemia.*
Survival among Patients with Stable CAD by NT-pro-BNP Quartile

Adjusted for age, diabetes, smoking, LVEF, HF, and angiographic CAD severity.

P<0.001 log-rank test for overall comparison among groups
Consecutive pts (n=201) without flow-limiting CAD or reduced EF had stress myocardial perfusion PET, cTn, and TTE followed (median 4.1 yrs) for CV death and hosp for non-fatal MI or HF. CFR quantified as stress/rest MBF. Early diastolic flow (E) and relaxation (e0) velocities via transmitral and tissue Doppler, respectively.

Pts with impaired CFR (<2.0, n=108) had linearly decreasing e0 and increasing E/e0 consistent with worsening diastolic function (P for trend <0.0001). Detectable cTn associated with diastolic dysfunction only in presence of impaired CFR (interaction P = 0.002). Impaired CFR independently associated with diastolic dysfunction (E/e0septal > 15, adjOR 2.58, 95%CI 1.22-5.48) and CV adverse outcome or HFpEF hosp alone (adjHR 2.47,CI 1.09-5.62). Pts with both impaired CFR and diastolic dysfunction had >5-fold increased risk of HFpEF hosp (P <0.001).

Symptomatic pts without overt CAD or HF, impaired CFR independently associated with diastolic dysfunction and adverse events, especially HFpEF hosp. Presence of both coronary microvascular and diastolic dysfunctions is associated with a markedly increased risk for HFpEF events.
Relationship between CFR and markers of diastolic dysfunction

Eur Heart J. 2018;39:840-9
Coronary microvascular dysfunction and HFrEF risk by CFR and diastolic dysfunction

A Unadjusted

B Adjusted for pretest clinical score and cTn

Freedom from Event (%)

Days

p < 0.001
Coronary microvascular dysfunction and HFpEF risk

Adjusted for pretest clinical score and cTn
Coronary microvascular dysfunction and HFpEF risk

Eur Heart J. 2018;39:840-9
Prevalence and correlates of coronary microvascular dysfunction in HFpEF: PROMIS-HFpEF

Prospective multinational study of HFpEF pts fulfilling strict guideline criteria (unrevascularized CAD excluded). CFR by ado stress TTE Doppler and systemic endothelial function [reactive hyperemia index (RHI)] by peripheral arterial tonometry.

Among 202 HFpEF patients, 151 [75%] had CMD (CFR <2.5); they had higher prevalence of smoking (70% vs. 43%; \(P = 0.0006 \)) and AF(58% vs. 25%; \(P = 0.004 \)) vs no CMD. Worse CFR was associated with higher urinary albumin-to-creatinine ratio (UACR) and NTproBNP, with lower RHI, tricuspid annular plane systolic excursion, and RV free wall strain (age, sex, BMI, AF, DM, revasc CAD, smoking, LV mass, site- adjusted \(P < 0.05 \) for all).

First prospective, multi-center, multinational study to document: 1) high prevalence of CMD and 2) an association with systemic endothelial dysfunction (RHI, UACR) as well as markers of HF severity (NTproBNP and RV dysfunction). Microvascular dysfunction may be a promising therapeutic target in HFpEF.
Pts with angina but no obstructive CAD (n=151) randomized to either intervention diagnostic procedure (IDP) stratified therapy based on results or sham procedure results not disclosed and standard care (SC). IDP included measurements of CFR, IMR and FFR with IV ado and IC Ach. Treatment according to ESC guidelines: CMD- BB with nitrate contraindicated; vasospastic angina- CA antagonist w/wo nitrate.

Results- mean age 61, ~ 3/4 women, 19% 10 yr CV event risk, angina questionnaire score reflected severe symptoms). At 6 mos, IDP pts had less angina vs SC (P = 0.001), and angina occurred less often and was less severe. Majority of clinicians changed SC pts treatment vs none changed in IDP pts. Higher % of clinicians were certain of IDP vs SC pts diagnosis of microvascular angina or vasospastic angina (83% vs 18%; P < 0.001), were ~3X more likely to change angina therapy (P <0.001). No serious AEs occurred.

"First trial" to investigate CMD testing, showed pts angina improved when given an explanation for their symptoms followed by therapy tailored for a specific coronary disorder.
The WARRIOR Trial

• The first randomized controlled trial (Women's IschemiA TRial to Reduce Events In Non-ObstRuctive CAD [WARRIOR, Clinicaltrials.gov NCT03417388],

• Testing Intense Medical Treatment (IMT) to reduce adverse outcomes vs Usual Care (UC),

• Among 4422 women with angina and non-obstructive CAD highly suspect for CMD,

• Now enrolling.
Clinically Stable\(^1\) Women with Symptoms\(^2\) of Ischemia

Nonobstructive CAD\(^3\) by Invasive Coronary Angiogram or CCTA

Exclusions\(^4\)

RANDOMIZE 1:1 PROBE Design

INTENSIVE MEDICAL Strategy (IMT)\(^5\)

\(n=2211\)

USUAL MEDICAL CARE Strategy (UC)\(^6\)

\(n=2211\)

Average Follow-up 3 Years

Primary Outcome: First occurrence of Death, MI, Stroke, or Hospitalization for HF or Angina

\(^1\)No UAP, ACS, MI, etc. \(^2\)Symptoms- angina or angina equivalent \(^3\)≤50% diameter stenosis \(^4\)Exclude for Hx of non compliance, HIV, hepC, eGFR <30, liver disease, etc. \(^5\)IMT- Potent statin (or PCSK9 inhibitor) + ACE-I (or ARB if intolerant) \(^6\)UC- Usual clinical care
Variable Clinical Course of CMD-Ischemia and HFpEF

Progressive Loss of LV Diastolic Reserve

Progressive Loss of Coronary Microvascular Reserve

Resting Symptoms

LV Diastolic Function

Cor Microvascular Function

Active: Fewer Co-morbidities

Pre-symptomatic phase

Symptomatic phase

Sedentary: Multiple Co-morbidities

Daily Activities

Stress

IHD Symptoms

HF Symptoms

Ischemia threshold

C Pepine Unpublished

Age in years

0% 100%

0% 100%
CMD and LV End-diastolic pressure-volume relationships: WISE HFpEF

Unpublished Data: Elliot, Pepine, Bairey-Merz

A: Rest and 30% max isometric handgrip stress.

B-E: Coronary reactivity testing pathways with IC Ado, Ach, and NTG End-diastolic P-V relationships single beat model (Klotz, Dickstein, Burkhoff. Nature Protocols 20017;2:2152-8).
Ischemia due to CMD and HFpEF

Summary and Conclusions

Among pts with symptoms and signs of IHD without obstructive CAD, many have CMD and their outcomes are dominated by HFpEF. CFR/MBF is reduced, NTpro-BNP and hscTn are elevated in ischemia and all are prognostic factors for risk in IHD, as well as HF, independent of traditional risk factors and indices.

Thus, ischemia due to impaired coronary microcirculation as a primary risk factor, or early marker for onset of a “pre-HFpEF” syndrome, seems appropriate. A new therapeutic target?
Or, is it a bridge to nowhere?
CENTRAL ILLUSTRATION: Key Questions With Critical Gaps Identified in HFPpEF

1. Is HFPpEF a single entity or does it comprise many diseases?
 - **Single Entity**
 - Consistent patterns of signs/biomarkers/symptoms are observed across patients
 - Hypothesis supporting a pro-inflammatory state could trigger cascade of events leading to multiple downstream disturbances
 - **Many Diseases**
 - High prevalence of non-cardiac comorbidities in this population
 - Average older age in HFPpEF suggests different physiologic processes “partnering” with senescence to produce HFPpEF syndrome
 - Still in search of high-fidelity HFPpEF animal model

2. Should a HFPpEF classification system be clinically or mechanistically based?
 - **Clinically Based**
 - Practical and allows for management decisions to be based on current knowledge of HFPpEF phenotypes
 - Can attempt to tease apart cardiac and vascular components based on clinical observations
 - **Mechanistically Based**
 - Can stimulate drug development
 - Can assess dynamic contributions of different pathophysiological processes and their interactions

3. Do subpopulations of HFPpEF patients respond to treatment differently and should they be studied separately?
 - **Keep as Broad Group**
 - HFPpEF has diverse etiologies and this approach has worked to advance the field/improve patient outcomes
 - Larger study size is more important to detect true signal in a population with more factors influencing risks for hospitalization and mortality
 - **Break into Individual Subpopulations**
 - Match appropriate therapy to the targeted pathophysiological subtype
 - Hints from prior studies that diabetes/HFPpEF and obesity, among other subgroups, may be targets of HFPpEF prevention and/or treatment

4. Should HFPpEF outcomes place increasing focus on quality-of-life metrics rather than mortality/heart failure hospitalizations?
 - **Morbidity/Mortality Focus**
 - Direct relevance to patients, health system, and payers in the current environment
 - Has been the standard for HFPpEF thus far
 - **Quality-of-Life Metrics**
 - Demonstrated to be feasible in recent HFPpEF trials
 - Can produce a more focused measure of treatment effect
 - Allows for a patient-centered approach to HFPpEF

Is Post-PCI Angina Mostly Due to CMD?
EHJ 2018 in press

~20-40% OF PATIENTS PRESENT WITH ANGINA AFTER «SUCCESSFUL» PCI AT 1-YEAR FOLLOW UP

RESIDUAL DISEASE or DISEASE PROGRESSION
IN-STENT RESTENOSIS IN-STENT THROMBOSIS
DIFFUSE Atherosclerosis
INTRAMYOCARDIAL BRIDGE
CORONARY DISSECTION

STRUCTURAL

FUNCTIONAL

EPICARDIAL CORONARY ARTERY SPASM
CORONARY MICROVASCULAR DYSFUNCTION
DISEASE PROGRESSION OR RESIDUAL DISEASE

EHJ 2018 in press

YES

FFR/NHPR
(Assess intermediate stenoses)

OCT/IVUS
(Exclude subcritical unstable plaque)

ACH and/or ERGONOVINE
(Testing for microvascular spasm)

CFR/IMR
(Probe microvascular reactivity)

NO