Utility of PET MPI for identifying ischemia and guiding treatment in anomalous coronary arteries

Tiffany Dong, Tom Kai Ming Wang, Paul Cremer, Hani K. Najm, Gosta Pettersson, Wael A. Jaber

Background

- •Anomalous coronary arteries (AAOCA) are congenital aberrancies where the coronary artery arises from the inappropriate sinus, superior to the sinus of Valsalva or from the pulmonary artery.
- •Although AAOCA may be discovered incidentally, they are associated with sudden cardiac death (SCD) particularly in young athletes during exertion.
- •Guidelines recommend both anatomic and ischemic evaluation for AAOCA patients. <u>However the preferred stress testing modality remains controversial.</u>

Objective

To evaluate the utility, predictors and management of AAOCA patients undergoing PET/CT for ischemia assessment.

Methods

•Consecutive adult patients (n=82) with AAOCA undergoing PET/CT during 1/2015-6/2021 at Cleveland Clinic were studied. Ethics approval obtained.

•Relevant clinical, multi-modality imaging, management and outcomes data were collected. The primary endpoint is AAOCA surgery during follow-up (given few clinical events).

•Statistical analyses: multivariable using logistic regression and stepwise chi-squared test to demonstrate incremental prognostic value of prespecified covariates.

Results

	Total	PET/CT positive	PET/CT negative	P value
Number of patients	82	26	56	
Demographics	'	'	1	
Age (years)	45 ± 20	45 ± 20	45 ± 20	.967
Female	30 (37%)	10 (39%)	20 (36%)	.811
Body mass index (kg·m ⁻²)	28 ± 6	28 ± 7	28 ± 6	.778
Body surface area (m²)	1.98 ± 0.28	1.90 ± 0.27	2.02 ± 0.27	.064
Symptoms				
Chest pain	45 (55%)	16 (62%)	29 (52%)	.479
New York Heart Association class				.375
1	56 (68%)	15 (58%)	41 (73%)	
2	15 (18%)	6 (23%)	9 (16%)	
3	10 (12%)	5 (19%)	5 (9%)	
4	1 (1%)	0 (0%)	1 (2%)	
Pre-syncope/syncope	15 (18%)	4 (15%)	11 (20%)	.765
Cardiac arrest	2 (2%)	0 (0%)	2 (4%)	1.000
Past history				
Cardiac surgery	1 (1%)	0 (0%)	1 (2%)	1.000
Cardiac implantable electronic device	1 (1%)	0 (0%)	1 (2%)	1.000
Myocardial infarction	3 (4%)	0 (0%)	3 (5%)	.548
Coronary artery disease	7 (9%)	4 (15%)	3 (5%)	.200
Hypertension	32 (39%)	8 (31%)	24 (43%)	.339
Hyperlipidemia	38 (46%)	12 (46%)	26 (46%)	1.000
Diabetes	7 (9%)	4 (15%)	3 (5%)	.200
Current smoker	7 (9%)	2 (8%)	5 (9%)	1.000
Stroke	2 (2%)	1 (4%)	1 (2%)	.536
Atrial fibrillation	5 (6%)	1 (4%)	4 (7%)	1.000
Estimated glomerular filtration rate (mL·m ⁻²)	82 ± 17	80 ± 16	83 ± 17	.574
Hemoglobin (g-dL ⁻¹)	14.4 ± 3.4	14.0 ± 1.8	14.6 ± 4.0	.477
Medications				
Aspirin	27 (33%)	9 (35%)	18 (32%)	1.000
P2Y12 inhibitor	4 (5%)	1 (4%)	3 (5%)	1.000
Anticoagulant	3 (4%)	1 (4%)	2 (4%)	1.000
Statin	34 (42%)	11 (42%)	23 (41%)	1.000
Beta-blocker	31 (38%)	11 (42%)	20 (36%)	.632
Calcium channel blocker	14 (17%)	5 (19%0	9 (16%)	.758
Nitrates	11 (13%)	8 (31%)	3 (5%)	.003
Angiotensin converting enzyme inhibitor/angiotensin receptor blocker	19 (23%)	9 (35%)	10 (18%)	.158
Diuretic	7 (9%)	3 (12%)	4 (7%)	.673

Anatomic Characteristics

	Total	PET/CT positive	PET/CT negative	P value
Anatomical diagnosis modality				
Computed tomography angiography	69 (84%)	24 (92%)	45 (80%)	.209
Left heart catheterization	80 (98%)	26 (100%)	54 (96%)	1.000
Magnetic resonance angiography	2 (2%)	1 (4%)	1 (2%)	.536
Transthoracic echocardiography total	77 (94%)	25 (96%)	52 (93%)	1.000
Anomalous vessel				
Left coronary artery/branches	24 (29%)	10 (39%)	14 (25%)	.297
Left main	19 (23%)	10 (39%)	9 (16%)	.046
Left anterior descending	5 (6%)	0 (0%)	5 (9%)	.173
Left circumflex	2 (2%)	0 (0%)	2 (4%)	1.000
Right coronary artery	58 (71%)	16 (62%)	42 (75%)	.297

Nuclear Results

	Total	PET/CT positive	PET/CT negative	P value
Nuclear stress test	,			
Method				
Nitrogen13-Ammonia	54 (66%)	21 (81%)	33 (59%)	.079
Rubidium-82	28 (34%)	5 (19%)	23 (41%)	
Stress method				
Exercise	54 (66%)	21 (81%)	33 (59%)	.079
Dobutamine	28 (34%)	5 (19%)	23 (41%)	
Heart rate rest (bpm)	67 ± 12	68 ± 10	66 ± 13	.582
Heart rate maximum (bpm)	151 ± 23	157 ± 24	149 ± 23	.134
Systolic blood pressure maximum (mmHg)	156 ± 25	159 ± 25	154 ± 25	.414
Heart rate x blood pressure product	23,613 ± 5740	25,004 ± 6021	22,967 ± 5542	.136
Estimated metabolic equivalents of task	9.8 ± 2.6	9.2 ± 2.4	10.2 ± 2.7	.181
Left ventricular ejection fraction rest (%)	60 ± 10%	61 ± 8	59 ± 10	.379
Left ventricular ejection fraction stress (%)	65 ± 8%	65 ± 8	65 ± 8	.820
Chest pain with exercise	6 (73%)	1 (4%)	5 (9%)	.659
ST depression with exercise	13 (16%)	6 (23%)	7 (13%)	.329
Summed rest score	0.5 ± 2.6	0.3 ± 0.9	0.5 ± 3.0	.681
Summed stress score	2.8 ± 5.3	7.8 ± 5.7	0.5 ± 3.0	< .001
Summed difference score	2.5 ± 5.0	8.2 ± 5.9	0.0 ± 0.0	< .001
Scan risk				< .001
Indeterminate	5 (6%)	3 (12%)	2 (4%)	
Low	57 (70%)	6 (23%)	51 (91%)	
Intermediate	13 (16%)	11 (42%)	2 94%)	
High	7 (9%)	6 (23%)	1 (2%)	
Ischemia positive	26 (32%)	26 (100%)	N/A	N/A

Correlation with CT and PET

Outcomes

	Total	PET/CT positive	PET/CT negative	P value
Number of patients	82	26	56	
Surgery	37 (45%)	19 (73%)	18 (32%)	.001
Unroofing	29 (78%)	12 (63%)	17 (94%)	.042
Coronary artery bypass grafting	6 (17%)	5 (28%)	1 (6%)	.177
Reimplantation	2 (6%)	2 (11%)	0 (0%0	.486
Medication changes (after nuclear stress test)				
Aspirin	22 (27%)	10 (39%)	12 (21%)	.117
P2Y12 inhibitor	3 (4%)	2 (8%)	1 (2%0	.235
Anticoagulant	3 (4%)	3 (12%)	0 (0%)	.029
Statin	3 (4%)	3 (12%)	0 (0%)	.029
Beta-blocker	16 (20%)	7 (27%)	9 (16%)	.369
Calcium channel blocker	5 (6%)	2 (8%)	3 (5%)	.650
Nitrates	1 (1%)	1 (4%)	0 (0%)	.317
ACE inhibitor/ARB	1 (1%)	1 (4%)	0 (0%)	.317
Diuretic	20 (24%)	10 (39%)	10 (18%)	.056

Follow-up

	Total	PET/CT positive	PET/CT negative	P value
Outcomes	,			
Follow-up duration (years)	2.2 ± 1.8	2.2 ± 1.5	2.1 ± 1.9	.864
Death (all-cause)	1 (1%)	0 (0%)	1 (2%)	.000
Death (cardiovascular)	1 (1%)	0 (0%)	1 (2%)	.000
Myocardial infarction	2 (2%)	0 (0%)	2 (4%)	.000
Stroke/transient ischemic attack	1 (1%)	1 (4%)	0 (0%)	.317
Arrhythmia hospitalization	4 (5%)	2 (8%)	2 (4%)	.588
Heart failure hospitalization	0 (0%)	0 (0%)	0 (0%)	.000
Chest pain hospitalization	10 (12%)	3 (12%)	7 (13%)	.000
Chest pain at end of follow-up	21 (26%)	6 (29%)	15 (71%)	.792
Cardiovascular hospitalization	14 (17%)	7 (27%)	7 (13%)	.124

Forest plots of odds ratios (95% confidence intervals) of covariates from multivariable analyses for A PET ischemia and B anomalous coronary surgery

Model 1: Age

Model 2: Model 1 + chest pain

Model 3: Model 2 + anomalous left main

Model 4: Model 3 + PET ischemia positive

Discussion

- 1/3 of AAOCA are not low-risk anatomically have +ischemia on PET-CT
- Ischemia on PET-CT is 4x for anomalous LM
- Chest pain or +ischemia on PET drives referral to surgery
- Short-term outcomes of anomalous surgery are excellent

Limitations

- Single-center retrospective observational cohort design
- Small cohort size & number of events
- Possible selection bias due managing cardiologists
- Rare adverse events

Conclusion

•PET-CT by both exercise N13-ammonia and dobutamine regadenason are feasible to assess ischemia in AAOCA and has valuable role in addition to anatomy and chest pain symptoms in the decision-making for AAOCA surgery.

•AAOCA patients carefully managed had good outcomes. Predictors of AAOCA surgery (chest pain and PET/CT ischemia) were identified.

ORIGINAL ARTICLE

Utility of positron emission tomography myocardial perfusion imaging for identifying ischemia and guiding treatment in patients with anomalous coronary arteries

Tom Kai Ming Wang, MBChB, MD,^a Tiffany Dong, MD,^a Paul C. Cremer, MD,^a Hani Najm, MD,^b Gosta Pettersson, MD, PhD,^b and Wael A. Jaber, MD, FACC, FESC^{a,c}

Thank you!

Cleveland Clinic

Every life deserves world class care.